Answer:
5) Displacement = +3.125 m
Displacement is in the same direction as the force vector.
6) Force = -53.89 N
Force is in an opposite direction relative to the displacement.
Explanation:
5) We are given;
Force; F = 160 N.
Workdone; W = +500 J
Now, formula for workdone is;
W = Force × displacement
Thus, displacement = Work/force
Displacement = 500/160
Displacement = +3.125 m
Thus, displacement is in the same direction as the force vector.
6) We are given;
Displacement; d = 18 m.
Workdone; W = -970 J
Like in the first answer above,
Workdone = Force × Displacement
Thus;
Force = Workdone/Displacement
Force = -970/18
Force = -53.89 N
Since force is negative and displacement is positive, it means force is in an opposite direction relative to the displacement.
Answer:
Friction, normal force, and weight
Explanation:
If the book slows down, it means that there must be friction acting in the opposite direction of the direction the book is moving in.
Weight is caused by the gravitational pull of the Earth on the book, and normal force is the table pushing the book up because the book is pushing down on the table (3rd law.)
Note that weight and normal force is not the 3rd law action-reaction pair. The pair is the force of the book on the table and the force of the table on the book.
Answer: True.
Explanation:
A resistance force is also known as friction. And the efficiency of a machine is affected by friction.
A machine of lower efficiency has higher magnitude of friction than a machine of higher efficiency.
Therefore, To obtain the same resistance force, a greater force must be exerted in a machine of lower efficiency than in a machine of higher efficiency. This is true
First of all, the formula for speed is;
Speed=distance/time
From the question, you have;
distance=7,200km
Time=9 hours
So that will be;
Speed=7200/9
When divided, you will have;
Speed=800
The unit for speed is km/hr or m/s. So that will be;
Speed=800km/hr
Hope that helped, have a nice day
<span>10 inches
You are at risk of serious injury if you sit less than 10 inches away from the steering wheel, because of the speed and force the airbag deploys at. This is also part of the reason why driving instructors now instruct you to hold the steering wheel from the lower parts, rather than the top, which can cause your thumbs to break if the air bag deploys.</span>