Answer:
2.895*10^24
Explanation:
mass of Oxygen give = 153.9g
molar mass of O2 molecule = 16*2=32g/mol
n= mole
To find the mole
n= mass/ molar mass
n= 153.9/32
n=4.81mol.
To find the number of molecules of o
Nm= number of molecule
Nn = Number of mole
NA = number of Avogados
Nm= Nn * NA
Nm= 4.81 *6.02*10^23
Nm= 2.895*10^24
Answer:
See the answer below
Explanation:
1. Organisms produce energy for cells by chemically breaking down and unlocking the energy locked-up within food materials in a process known as cellular respiration. The unlocked energy is then utilized for the cell's metabolic activities.
2. Cellular respiration can be aerobic or anaerobic.
Aerobic respiration involves the breakdown of carbohydrates in the presence of oxygen to yield energy in the form of ATP while carbon dioxide and water are produced as by-products.

Anaerobic respiration involves the breakdown of carbohydrates in the absence of oxygen to produce ATP and lactic acid as a by-product. The lactic acid is later oxidized to carbon dioxide and water to prevent it from building up.

3. Photosynthesis and cellular respiration are both considered metabolic processes that take place in living organisms. However, photosynthesis is peculiar only to green plants and some algae while respiration is common to all living organisms. While photosynthesis is anabolic, that is, it involves the building up of materials; respiration is said to be catabolic because it involves the breaking down of materials.
During photosynthesis, inorganic products are utilized to produce carbohydrates for plants with oxygen gas released as a by-product according to the following equation:

During respiration, the food taken by living organisms is broken down to unlock the energy in it for metabolic activities according to the following equation:

In an ionic bond, one atom essentially donates an electron to stabilize the other atom. The atoms in an ionic bond have different electronegativity values from each other.
While in a covalent bond, the atoms are bound by shared electrons and the electronegativity values are the same.
High energy waves have short wavelengths and thus high frequencies as a result.