1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
2 years ago
15

A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The

clay compresses the spring a certain maximum amount before momentarily stopping. What is the maximum compression of the spring
Physics
1 answer:
Yuki888 [10]2 years ago
5 0

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

You might be interested in
Two strings with linear densities of 5 g/m are stretched over pulleys, adjusted to have vibrating lengths of 0.50 m, and attache
HACTEHA [7]

Answer:

2.18 kg

Explanation:

The frequency of a wave in a stretched string f = n/2L√(T/μ) where n = harmonic number, L = length of string, T = tension = mg where m = mass of object on string and g = acceleration due to gravity = 9.8 m/s² and μ = linear density of string.

For string 1, its fundamental frequency f  is when n = 1. So,

f = 1/2L√(T/μ) =  1/2L√(mg/μ)

Now for string 1, L = 0.50 m, m = 20 kg and μ = 5 g/m = 0.005 kg/m

substituting the values of the variables into f, we have

f = 1/2L√(mg/μ)

f = 1/2 × 0.50 m√(20 kg × 9.8 m/s²/0.005 kg/m)

f = 1/1 m√(196 kgm/s²/0.005 kg/m)

f = 1/1 m√(39200 m²/s²)

f = 1/1 m × 197.99 m/s

f = 197.99 /s

f = 197.99 Hz

f ≅ 198 Hz

For string 2, at its third harmonic frequency f'  is when n = 3. So,

f' = 3/2L√(T/μ) =  3/2L√(mg/μ)

Now for string 2, L = 0.50 m, m = M kg and μ = 5 g/m = 0.005 kg/m

substituting the values of the variables into f, we have

f' = 3/2L√(Mg/μ)

f' = 3/2 × 0.50 m√(M × 9.8 m/s²/0.005 kg/m)

f' = 3/1 m√(M1960 m²/s²kg)

f' = 3/1 m√M√(1960 m²/s²kg)

f' = 3/1 m √M × 44.27 m/s√kg

f' = 132.81√M/s√kg

f' = 132.81√M Hz/√kg

Since the frequency of the beat heard is 2 Hz,

f - f' = 2 Hz

So, 198 Hz - 132.81√M Hz/√kg = 2 Hz

132.81√M Hz/√kg = 198 Hz - 2 Hz

132.81√M Hz/√kg = 196 Hz

√M Hz/√kg = 196 Hz/138.81 Hz

√M/√kg = 1.476

squaring both sides,

[√M/√kg] = (1.476)²

M/kg = 2.178

M = 2.178 kg

M ≅ 2.18 kg

8 0
2 years ago
You pull a 70-kg crate at an angle of 30° above the horizontal. If you pull with a force of 600N and the coefficient of kinetic
Alenkinab [10]

Answer:

Explanation:

Force of friction acting on the body = μ mg cosθ

= .4  x 70 x 9.8 x cos30

= 237.63 N

component of weight = mgsinθ

= 70 x 9.8 x sin30

= 343 N  

Net upward force = 600 - mgsinθ - μ mg cosθ

= 600 - 343 - 237.63

= 105.37 N

acceleration in upward direction = 105.37 / 70

= 1.5 m /s²

s = ut + 1/2 a t²

= 0 + .5 x 1.5 x 3²

= 6.75 m .

5 0
3 years ago
Is direction the length of the route between two points ?
zepelin [54]

Answer:

No distance is the length between two routes

Explanation:

Distance is the length of the route between two points. ... Direction is just as important as distance in describing motion. A vector is a quantity that has both size and direction. It can be used to represent the distance and direction of motion.

6 0
2 years ago
Identify the chemical change below
lesya [120]
Imma say go with C (:
5 0
3 years ago
How much current will pass through a 12.5 ohm resistor when it is connected to ta 115 volt source of electrical potential?
Marrrta [24]

Answer:

9.2 amperes

Explanation:

Ohm's law states that the voltage V across a conductor of resistance R is given by V = R I

Here, voltage V is proportional to the current I.

For voltage, unit is volts (V)

For current, unit is amperes (A)

For resistance, unit is Ohms (Ω)

Put R = 12.5 and V = 115 in V=RI

115=12.5I\\I=\frac{115}{12.5}\\ =9.2\,\,amperes

8 0
3 years ago
Other questions:
  • what are the various ways in which lithospheric plates interact with each other as they move around on a dynamic earth??
    5·1 answer
  • Which equation best describes the law of conservation of momentum?
    11·2 answers
  • You find it takes 200 J of heat to take 4 kg of an unknown substance from 200 K to 240 K. It does not change phases during this
    10·1 answer
  • the useful power out of an electric motor is 20w and the total power into the motor is 80w calculate the percentage efficiency o
    15·1 answer
  • A basketball player pushes down with a force of 34 N on a basketball that is inflated
    11·1 answer
  • How does a body move if it's constantly under force?
    9·2 answers
  • Larger size, longer life, and specialization are three advantages to<br> being a
    15·1 answer
  • How long did it take the shuttle shock to fall 12 meters
    5·1 answer
  • How can you identify the north/south pole in a magnet. Is there a north/south pole in a magnetic field and if so how do we ident
    14·2 answers
  • The way roughness of surfaces affects kinetic friction is called the __________ of kinetic friction?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!