1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
15

A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The

clay compresses the spring a certain maximum amount before momentarily stopping. What is the maximum compression of the spring
Physics
1 answer:
Yuki888 [10]3 years ago
5 0

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

You might be interested in
FREE BRAINLEIAST FOR FIRST GOGOGOGO!!!!heererer
Kamila [148]

Answer:

ME PLS

Explanation:

6 0
3 years ago
A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy
GalinKa [24]

Answer:

Kinetic energy, E = 133.38 Joules

Explanation:

It is given that,

Mass of the model airplane, m = 3 kg

Velocity component, v₁ = 5 m/s (due east)

Velocity component, v₂ = 8 m/s (due north)

Let v is the resultant of velocity. It is given by :

v=\sqrt{v_1^2+v_2^2}

v=\sqrt{5^2+8^2}=9.43\ m/s

Let E is the kinetic energy of the plane. It is given by :

E=\dfrac{1}{2}mv^2

E=\dfrac{1}{2}\times 3\ kg\times (9.43\ m/s)^2

E = 133.38 Joules

So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.

5 0
3 years ago
Read 2 more answers
A basketball is tossed up into the air, falls freely, and bounces from the wooden floor. From the moment after the player releas
Tju [1.3M]

Answer:

Tha ball- earth/floor system.

Explanation:

The force acting on the ball is the force of gravity when ignoring air resistance. At the moment the player releases the ball, until it reaches the top of its bounce, the small system for which the momentum is conserved is the ball- floor system. The balls exerts and equal and opposite force on the floor. <u>Here the ball hits the floor, because in any collision the momentum is conserved. Moment of the ball -floor system is conserved</u>. Mutual gravitation bring the ball and floor together in one system. As the ball moves downwards, the earth moves upwards, although with an acceleration on the order of 1025 times smaller than that of the ball. The two objects meet, rebound and separate.

5 0
3 years ago
Convert 16.1 km/h to meters per second
fiasKO [112]
16.1=4.472222 i hope this helps!!
8 0
3 years ago
What is the resultant force of 500g on abject accelerating at 5m/s2
max2010maxim [7]

Answer: 2.5 N

Explanation:

m = 500g = 0.5Kg

a = 5m/s2

F = ma = 0.5 x 5 = 2.5 N

6 0
3 years ago
Other questions:
  • Two charges q1 and q2 exert a 90 N electrostatic force onto each other when they are 1 m apart. They are moved further away to a
    5·2 answers
  • In a double-slit experiment, the slit separation is 2.0 mm, and two wavelengths, 750 nm and 900 nm, illuminate the slits. A scre
    6·1 answer
  • A _____ is a quantity that has magnitude and direction
    12·1 answer
  • The clean water act___
    9·1 answer
  • All ions are atoms with a (2 points)
    6·2 answers
  • A proposed space station includes living quarters in a circular ring 45.0 m in diameter.
    15·1 answer
  • A ______ is a push or pull that one object exerts on another.
    13·2 answers
  • Please help me i need some help!!
    5·1 answer
  • Defects of vision and their correction drawing ​<br><br>No Spams ❌❌
    11·2 answers
  • Which of the following are examples of negative brain plasticity? (Note: You will
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!