Answer:
235.8 N
Explanation:
Given that
Jack
83.5 east
Jill
93.3√2/2 east
93.3√2/2 north
Jane
121√2/2 east
121√2/2 south
From the above listed, we can calculate the total force component on x axis to be
Fx = 83.5 + 93.3√2/2 + 121√2/2
Fx = 83.5 + 65.97 + 85.56
Fx = 235 N (east)
Again, we calculate the total force component on y axis to be
Fy = 93.3√2/2 - 121√2/2
Fy = 65.97 - 85.56
Fy = -19.59 N (south)
Finding the resultant, we have
F = √(Fx²+Fy²)
F = √(235² + (-19.59)²)
F = √55225 + 383.7681
F = √55608.7681
F = 235.8 N
Ans: A quantity cannot have units until it has dimensions. A quantity that has dimensions must have units. Yes a quantity have units but still be dimensionless for example,unit of angle is radian ,but it is a dimensionless quantity. A dimensionless quantity may have unit.
Answer:
Ke=electron kinetic energy=
Explanation:
The electron has a mass of 
The speed of light in a vacuum is a universal constant with the value 299 792 458 m / s (186 282,397 miles / s), although it is usually close to 
Kinetic energy (K) is the energy associated with bodies that are in motion, depends on the mass and speed of the body and is calculated using the formula:
Equation(1)
K=kinetic energy (J)
m =mass of the body (kg)
v= speed of the body
for this problem We replace in the equation (1)
= electron mass
=Half the speed of light
=electron speed
We replace in the equation (1) :




The energy kinetic of the electron is 
Heat required to raise the temperature of water is given as

here we have
m = 100 g = 0.100 kg
s = 4183 J/kg C

now we can use the above equation


so here it requires 20920 J heat to raise the temperature of 100 g water by 50 degree C