To answer this question, you need to know the definition of Relative Motion:
The motion is relative when it depends on a reference point or referencial system. If you know the reference point, you can determine the velocity of an object.
If you are sitting on your chair, you are not moving relative to it (Your speed is 0 km/s); but as you know, our planet moves around the Sun (Traslation Movement) with a speed of 30.0 km/s. Therefore, you are moving 30.0 km/s relative to the sun.
Answer:
Velocity of Pauli relative to Daniel = (-1.50ï + 3.90ĵ) m/s
x-component = -1.50 m/s
y-component = 3.90 m/s
Explanation:
Relative velocity of a body A relative to another body B, Vab, is given as
Vab = Va - Vb
where
Va = Relative velocity of body A with respect to another third body or frame of reference C
Vb = Relative velocity of body B with respect to that same third body or frame of reference C.
So, relative velocity can be given further as
Vab = Vac - Vbc
Velocity of Newton relative to Daniel = Vnd = 3.90 m/s due north = (3.90ĵ) m/s in vector form.
Velocity of Newton relative to Pauli = Vnp = 1.50 m/s due East = (1.50î) m/s in vector form
What is Pauli's velocity relative to Daniel?
Vpd = Vp - Vd
(Pauli's velocity relative to Daniel) = (Pauli's velocity relative to Newton) - (Daniel's velocity relative to Newton)
Vpd = Vpn - Vdn
Vpn = -Vnp = -(1.50î) m/s
Vdn = -Vnd = -(3.90ĵ) m/s
Vpd = -1.50î - (-3.90ĵ)
Velocity of Pauli relative to Daniel = (-1.50ï + 3.90ĵ) m/s
Hope this Helps!!!!
<span>In an earthquake, a P wave is a longitudinal wave. It moves through soil and rock as a C. series of compressions and rarefactions.</span>
The working equation would be Vf (final velocity) = Vi
(initial velocity) + a (acceleration) t (time). The given data are the initial
velocity (5.0 m/s), acceleration (-2.5 m/s^2, negative since it is said to
decelerate) and the final velocity (0 m/s, since it will put to a stop). The
time would be 2 seconds.
Answer:
.D)The Vector sum of the linear momenta of the fragments must be zero.
Explanation:
.D)The Vector sum of the linear momenta of the fragments must be zero.
This statement is true. This is so because no external force is acting on the masses. The motion is created by internal force so momentum of fragments will be conserved.
A) this statement is false because kinetic energy was zero in the beginning ( the bomb was stationary in the beginning )
B ) This statement is false because it violates the law of conservation of momentum .( it does not violates only when all the fragments have equal mass )
C ) This statement is zero because kinetic energy is not a vector quantity so two kinetic energy when added can not sum up to zero.