Answer:
17,947.02 Hz
Explanation:
length (L) = 62 cm = 0.62 m
tension (T) = 70 N
mass per unit length (μ) = 0.10000 g/cm = 0.010000 kg/m
maximum frequency = 18,000 Hz
f = 
f = 
f = n x 67.47
18,000 = n x 67.47
n = 266.8≈ 266
the 267th overtone is the highest overtone that can be heard by this person, and its frequency would be 26 x 67.47 = 17,947.02 Hz
<h2>Answer: True
</h2>
The <u>Doppler effect</u> refers to the change in a wave perceived frequency when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.
In other words, it is the variation of the frequency of a wave due to the relative movement of the source of the wave with respect to its receiver.
It should be noted that this effect bears its name in honor of the Austrian physicist <u>Christian Andreas Doppler</u>, who in 1842 proposed the existence of this effect for the case of light in the stars. Another important aspect is that the effect occurs in all waves (including light and sound). However, it is more noticeable to humans with sound waves.
Because the liver helps to regulate blood clotting, people<span> with liver disease (for example, hepatitis or cirrhosis) also have a tendency to </span>bleed<span> easily. Most commonly, easy or excessive bruising occurs because the skin and blood vessels are fragile.
Hope This Helped! :3</span>
My answer i believe is simply 250 Hz, because sounds or vibrations travel in 1 cycle/second, meaning the number of cycles, in your case 250, divided by the time,1 second, will ultimately be 250 Hertz. For every Cycle/second it will equal 1 Hz, so 250/1 = 250Hz
The answer is D) vibrate. vibrations are what cause sound. Consequently, this is why there is no sound in space, because there is no medium for the for which sound to travel