Answer:
ccvtesgdujtdchgdrgggggggfrrrtyfaasdddfffghgdshh
A) no H30+ ions or OH- ions.
Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
Explanation:
<em><u>Principle of Floatation</u></em>
Principle of Floatation states that weight of floating body is equal to weight of water displaced by it
Answer:
The frequency increases by a factor of 3.
Explanation:
The relation between speed, wavelength and frequency of a wave is given by :

or

A wave travels at a constant speed. If the wavelength is reduced by a factor of 3, it would mean that the frequency increases by a factor of 3 because there is an inverse relationship between wavelength and frequency.