Explanation:
It is given that,
Force, 
Position vector, 
(a) The torque on the particle about the origin is given by :

(b) To find the angle between r and F use dot product formula as :

Hence, this is the required solution.
First I will parallel two of the resistors, creating a net 1 ohm. Then I will series that with the remaining 2-ohm resistor, resulting in 3 ohms.
Answer:
1 * 10^-7 [J]
Explanation:
To solve this problem we must use dimensional analysis.
1 ergos [erg] is equal to 1 * 10^-7 Joules [J]
![1[erg]*\frac{1*10^{-7} }{1}*[\frac{J}{erg} ] \\= 1*10^{-7}[J]](https://tex.z-dn.net/?f=1%5Berg%5D%2A%5Cfrac%7B1%2A10%5E%7B-7%7D%20%7D%7B1%7D%2A%5B%5Cfrac%7BJ%7D%7Berg%7D%20%5D%20%5C%5C%3D%201%2A10%5E%7B-7%7D%5BJ%5D)
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :

R is the Rydberg's constant
For Balmer series, n₁ = 2. So,


or

So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.