Hello there what is the question?
Answer : The formal charge on the C is, (-1) charge.
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is,
As we know that carbon has '4' valence electrons and hydrogen has '1' valence electron.
Therefore, the total number of valence electrons in = 4 + 3(1) + 1 = 8
According to Lewis-dot structure, there are 6 number of bonding electrons and 2 number of non-bonding electrons.
Now we have to determine the formal charge on carbon atom.
Formula for formal charge :
The formal charge on the C is, (-1) charge.
<span>C7H8
First, lookup the atomic weight of all involved elements
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Then calculate the molar masses of CO2 and H2O
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488 g/mol
Now calculate the number of moles of each product obtained
Note: Not interested in the absolute number of moles, just the relative ratios. So not going to get pedantic about the masses involved being mg and converting them to grams. As long as I'm using the same magnitude units in the same places for the calculations, I'm OK.
moles CO2 = 3.52 / 44.0087 = 0.079984
moles H2O = 0.822 / 18.01488 = 0.045629
Since each CO2 molecule has 1 carbon atom, I can use the same number for the relative moles of carbon. However, since each H2O molecule has 2 hydrogen atoms, I need to double that number to get the relative number of moles for hydrogen.
moles C = 0.079984
moles H = 0.045629 * 2 = 0.091258
So we have a ratio of 0.079984 : 0.091258 for carbon and hydrogen. We need to convert that to a ratio of small integers. First divide both numbers by 0.079984 (selected since it's the smallest), getting
1: 1.140953
The 1 for carbon looks good. But the 1.140953 for hydrogen isn't close to an integer. So let's multiply the ratio by 1, 2, 3, 4, ..., etc and see what each new ratio looks like (Effectively seeing what 1, 2, 3, 4, etc carbons look like)
1 ( 1 : 1.140953) = 1 : 1.140953
2 ( 1 : 1.140953) = 2 : 2.281906
3 ( 1 : 1.140953) = 3 : 3.422859
4 ( 1 : 1.140953) = 4 : 4.563812
5 ( 1 : 1.140953) = 5 : 5.704765
6 ( 1 : 1.140953) = 6 : 6.845718
7 ( 1 : 1.140953) = 7 : 7.986671
8 ( 1 : 1.140953) = 8 : 9.127624
That 7.986671 in row 7 looks extremely close to 8. I doubt I'd get much closer unless I go to extremely high integers. So it looks like the empirical formula for toluene is C7H8</span>
Hehehehwgwgw. Be the hardest thing ever for a long day and I have a windows
This question includes four answer choices:
A. definite volume, highest molecular motion, highest kinetic energy
B. indefinite volume, least molecular motion, highest kinetic energy
C. definite volume, least molecular motion, lowest kinetic energy
D. definite volume, no molecular motion, lowest kinetic energy
Solids do not have the highest molecular motion (on the contrary they have the least molecular motion), so you can discard option A. Solids have a definite volume and the highest kinetic energy (given that they have the least molecular motion), so you discard option C. Molecules always have a vibrational motion, so you discard option D. Option C, have only characteristics that correctly describes a solid: definite volume, least molecular motion, lowest kinetic energy. Therefore, the answer is the option C.
<span /><span>
</span>