Answer: Correct options are as follows.
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
Explanation:
When salt is dissolved in water then it means that it is a physical change as salt has completely dissociated into ions but they are not chemically combined to the water molecules.
As a result, both salt and water will retain their chemical properties.
For example, NaCl when dissolved in water will dissociate as follows.

Only the particles of salt have evenly distributed in water.
And, when a components of a salt chemically combine with another substance then it will form a new compound.
Therefore, we can conclude that salt dissolved in water is a solution, therefore:
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4
The answer to this question would be C
Velocity is defined as displacement over time. Could you have possible meant viscosity? If so, viscosity is defined as the state of being thick, sticky, and semifluid in consistency, due to internal friction. And example of a substance with a high viscosity would be honey.
Kinetic Energy which relies on an objects mass and velocity and Potential Energy which relies on the height of the object