Answer:
(a) The speed of the first particle is 1.75 m/s. The speed of the second particle is 6.9 m/s after the collision.
(b) The speed of the first particle is 3.45 m/s in the negative direction. The speed of the second particle is 1.73 m/s.
(c) The final kinetic energy of the incident particle in part (a) and part(b) is 0.0031 J and 0.011 J, respectively.
Explanation:
(a)
In an elastic collision, both momentum and energy is conserved.

Combining these equations will give the speed of the second particle.

We can use this to find the speed of the first particle.

(b)
If m_2 = 10g.


The minus sign indicates that the first particle turns back after the collision.
(c)
The final kinetic energy of the particle in part (a) and part (b) is
Strong forces:
- are forces holding nucleons together
- are independent of electric charge
- act only over a very short distance
So, correct answer is 4) all of these
Explanation:
The strong force is one of the 4 fundamental forces of nature. It is responsible for holding the nucleons (protons and neutrons) together into the nucleus of the atom.
In fact, the protons inside the nucleus of an atom experience a repulsive, electrostatic force between each other: if this force was not balanced, the protons will simply fly away from each other, and the nucleus would break apart, so no nucleus could exist.
The strong force acts to prevent this effect: the strong force is attractive at such short scales, and it holds the protons and the neutrons together. It is independent of the electric charge: in fact, it acts in the same way on protons and neutrons, being attractive in both cases. Also, the strong force acts only over very short distances, so it acts only inside the nucleus of an atom.
Therefore, all the statements are correct, so the correct option is
4) all of these
#LearnwithBrainly
Answer:
First Condition of Equilibrium is that it must be experiencing no acceleration or the external forces acting on the body should be zero.