The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
IMA stands for ideal mechanical advantage, which is the theoretical force amplification factor on an ideal mechanical device free of friction, deformations, etc.
If the applied force (effort) is 50N, then the force applied to the resistance is multiplied by the IMA=2 to get 100N.
Answer:
Explanation:
If E₀ is the electric field outside the smaller sphere and r is the radius of larger sphere.
E₀ = kQ/r²
The radius of the larger sphere is 3r and the charge on both sphere is same then the electric field outside the larger sphere is given as
E = kQ/(3r)² = kQ/9r² = 1/9 (kQ/r²)= 1/9 x E₀
hence the correct option is e.
Answer: 2.55meter
Explanation: Using the second equation of motion.
S{hieght} = U*t + {g*t²}/2
Where U is initial velocity =0m/s
g is acceleration due to gravity 10m/s²
t is time 1secs
So we have,
hieght = 0 + {g*t²}/2
hieght = {10*(1)²}/2
Total hieght travelled is 10/2
Which is 5 meter.
But we are asked to find the hieght above the window which as a hieght of 2.45meter.
So,
hieght above window would be
{5 - 2.45}meter
Which is 2.55 meter.