Answer:
B. 9.0 V
Explanation:
In parallel circuits, the voltage across each circuit is the same across each component, which is also equal to the total voltage of the power supplied. So in this case, the voltage across each resistor is still 9.0V.
The voltage only changes when the resistors can connected in series.
Answer: Please find the answer in the explanation
Explanation:
Under what circumstances does distance traveled equal magnitude of displacement?
When a body's motion is linear in one direction. Or a body moving in a straight line without turning back.
What is the only case in which magnitude of displacement and distance are exactly the same?
When the body is moving in a straight line with without changing direction or without turning back.
Hi!
The energy of the block is 4 m/s
To calculate this, you need to use the equation for
kinetic energy. The block is sliding (i.e. it's moving). If the object is sliding across a level surface, the only energy it has is kinetic energy, because
there is no change in potential energy (which changes with height). So, the mechanical energy will be pure kinetic energy. The equation is the following, derived from the expression for kinetic energy:
Have a nice day!
According to law of conservation of energy,
<span>Energy can neither be constructed nor be destroyed but can be transformed from one form to another.
</span>
<span>At the highest point of the pendulum(point b), pendulum is associated with potential energy only and no kinetic energy.
</span><span>Therefore total energy at point b = potential energy = 711 J.... i
</span>
<span>At the bottom most point(point a), pendulum is associated only with kinetic energy and no potential energy.
</span>Therefore total energy at point a = kinetic energy ---- ii
<span>From i and ii,
</span>Kinetic energy = potential energy = 711 J.(Conserving energy)
Hence kinetic energy at the bottom most point is 711 J.
Hope this helps!!
Answer:
e = Δφ / Δt induced emf is proportional to enclosed flux
Also φ = B * A flux is proportional to area and enclosed field
If the induced emf e increases with time than the flux and hence the magnetic field is increasing with time (replace B with G)
Since e = ΔG * A / Δt if e is linear then G must also be linear and be proportional to the time