The entropy of the process in which the individual ions first leave the crystal lattice is positive while the entropy of the process whereby the each ion becomes surrounded by a cluster of polar water molecules is negative.
<h3>What is entropy?</h3>
The term entropy has to do with the degree of disorder in a system. The higher the entropy of the system, the more the disorderliness of the system.
Now, the entropy of the process in which the individual ions first leave the crystal lattice is positive while the entropy of the process whereby the each ion becomes surrounded by a cluster of polar water molecules is negative.
Learn more about entropy: brainly.com/question/13146879
Answer:
<h2>Heterogeneous</h2>
Explanation:
<h3><em>Milk </em><em>seems</em><em> to</em><em> be</em><em> </em><em>homogeneous</em><em> mixture</em><em> </em><em>but </em><em>actually</em><em> </em><em>milk </em><em>is </em><em>a </em><em>heterogeneous</em><em> </em><em>mixture</em><em> </em><em>and </em><em>a </em><em>colloid</em><em> </em><em>solution</em><em>.</em></h3>
Answer:
Option C. 4.03 g
Explanation:
Firstly we analyse data.
12 % by mass, is a sort of concentration. It indicates that in 100 g of SOLUTION, we have 12 g of SOLUTE.
Density is the data that indicates grams of solution in volume of solution.
We need to determine, the volume of solution for the concentration
Density = mass / volume
1.05 g/mL = 100 g / volume
Volume = 100 g / 1.05 g/mL → 95.24 mL
Therefore our 12 g of solute are contained in 95.24 mL
Let's finish this by a rule of three.
95.24 mL contain 12 g of sucrose
Our sample of 32 mL may contain ( 32 . 12) / 95.24 = 4.03 g
I have the same question too!!!Dang I thought I would get a answer I just guessed