Refer to the diagram shown below.
In this analysis, wind resistance is ignored, and g = 9.8 m/s².
The meat falls with zero vertical velocity, therefore the time, t, before the meat hits the ground is

If the fox catches the meat before it hits the ground, then the fox should travel a horizontal distance d in the same time that the meat travels a horizontal distance (7 -d).
The meat travels a distance of
7 - d = (1.2 m/s)*(1.75 s) = 2.1 m
or
d = 4.9 m
Let v = velocity of the fox when it catches the meat.
If the acceleration of the fox is a m/s², then
v = 1.75a
Also,

Answer: 2.37 m/s (nearest hundredth)
The concept used to solve this problem is that given in the kinematic equations of motion. From theory we know that the change in velocities of a body is equivalent to twice the distance traveled by acceleration, in other words:

Where,
Final and initial velocity
a = Acceleration
x = Displacement
For the given case, the displacement is equivalent to the height (x = h) and the acceleration is the same gravitational acceleration (a = g). In turn we do not have initial speed therefore


Our values are given as


Replacing we have that,



Therefore the speed with which the liquid sulfur left the volcano is 529.15m/s
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know from the Coulomb's Law that, Coulomb's force is directly proportional to the product of two charges q1 and q2 and inversely proportional to the square of the radius between them.
So,
F = 
Now, we are asked to get the greatest force. So, in order to do that, product of the charges must be greatest because the force and product of charges are directly proportional.
Let's suppose, q1 = q
So,
if q1 = q
then
q2 = Q-q
Product of Charges = q1 x q2
Now, it is:
Product of Charges = q x (Q-q)
So,
Product of Charges = qQ - 
And the expression qQ -
is clearly a quadratic expression. And clearly its roots are 0 and Q.
So, the highest value of the quadratic equation will be surely at mid-point between the two roots 0 and Q.
So, the midpoint is:
q =
q = Q/2 and it is the highest value of each charge in order to get the greatest force.
Answer:
a) 0 J
b) W = nRTln(Vf/Vi)
c) ΔQ = nRTln(Vf/Vi)
d) ΔQ = W
Explanation:
a) To find the change in the internal energy you use the 1st law of thermodynamics:

Q: heat transfer
W: work done by the gas
The gas is compressed isothermally, then, there is no change in the internal energy and you have
ΔU = 0 J
b) The work is done by the gas, not over the gas.
The work is given by the following formula:

n: moles
R: ideal gas constant
T: constant temperature
Vf: final volume
Vi: initial volume
Vf < Vi, then W < 0 and the work is done on the gas
c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.
The amount of heat is equal to the work done W
d)

When you shine a lite through a prism is reflects out light through all of the edges and causes light separation. Or just simply shine a laser through the edge of a sideways piece of glass.
I hope that this was helpful for you.