Answer:
1.5 m
Explanation:
Length. L = 12 m
Width, W = 16 m
Area, A = 12 x 16 = 192 m^2
Let the width of pavement be d.
The new length, L' = 12 + 2d
the new width, W' = 16 + 2d
New Area, A' = L' x W' = (12 + 2d)(16 + 2d) = 192 + 56 d + 4d^2
Difference in area = A' - A
285 = 192 + 56 d + 4d^2 - 192
93 = 56 d + 4d^2
4d^2 + 56 d - 93 = 0

\
d = 1.5 m
Thus, the width of the pavement is 1.5 m.
It'll be 152 Hz at the exact instant the bumblebee
is right at the tip of your nose, on his way past you.
Before he gets there, while he's coming at you,
he sounds like a frequency higher than 152 Hz.
After he passes by, and is going away from you,
he sounds like a frequency lower than 152 Hz.
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:

In 2Cr2O7 there’s 2 items; Cr and O