Answer:
when the reflecting surface is plain and without even small hurdles that are not the visible by our naked eyes. Eg : plain mirror
Explanation:
Answer:
d
= m× λ⇒ d = λ ×m×l / x
= 630×
m × 3×3m/ 45×
m
= 1.26×
m
Explanation:
the above calculation is based on Young’s double slit experiment where the two slits provide two coherent light sources which results either constructive interference or destructive interference when passing through a double slit.
Explanation:
Only few supernova are observed in our galaxy -
Type II supernovae ( i.e. the explosions of the massive stars ) occurred in the Milky Way, and they might be hidden by the intervening dust if they are located in the more distant parts of our Galaxy .
Type Ia supernovae , which need a white dwarf star in the binary star system , are brighter than the type II supernovae , but some of them could also happen in the older parts of Galaxy which are hidden due to the buildup of the dust and gas .
Answer:
Magnification, m = -0.42
Explanation:
It is given that,
Height of diamond ring, h = 1.5 cm
Object distance, u = -20 cm
Radius of curvature of concave mirror, R = 30 cm
Focal length of mirror, f = R/2 = -15 cm (focal length is negative for concave mirror)
Using mirror's formula :
, f = focal length of the mirror


v = -8.57 cm
The magnification of a mirror is given by,


m = -0.42
So, the magnification of the concave mirror is 0.42. Thew negative sign shows that the image is inverted.
Answer:
The bending of light as it passes from one medium to another is called refraction. The angle and wavelength at which the light enters a substance and the density of that substance determine how much the light is refracted. The bending occurs because light travels more slowly in a denser medium.
hope this helped :))