Answer:
For a material to be a good conductor, the electricity passed through it must be able to move the electrons; the more free electrons in a metal, the greater its conductivity.
Answer:
V = 9.33 m/s
Explanation:
Given that,
Mass of the batsman, 
Mass of the boat,
Initial speed of the boat, v = 11 m/s
Let V is the velocity of the boat after Batman lands in it. The net momentum of the system remains constant. Using the conservation of linear momentum to find it as :


V = 9.33 m/s
So, the velocity of the boat after Batman lands in it 9.33 m/s. Hence, this is the required solution.
Answer:
Net force required to accelerate the car is 6000 N
Explanation:
Force is calculated by the equation, F = Mass × Acceleration
This is based on Newton's Second Law of Motion which states that the force acting on an object is its mass times the acceleration of the object.
Here, mass = 3000 kg and acceleration = 2 m/s²
⇒ Force = Mass × Acceleration
= 3000 × 2 = 6000 N
⇒ F = 6000 N
⇒ M = 3000 kg
⇒ a = 2 m/s²
Answer:
(a) Magnitude: 14.4 N
(b) Away from the +6 µC charge
Explanation:
As the test charge has the same sign, the force that the other charges exert on it will be a repulsive force. The magnitude of each of the forces will be:

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q and qtest is the charge of the particles, and r is the distance between the particles.
Let's say that a force that goes toward the +6 µC charge is positive, then:


The magnitude will be:
, away from the +6 µC charge