Answer:
E) The centripetal force is always perpendicular to the velocity.
Explanation:
Due to gravity and inertia, the satellite follows a uniform circular motion. In this movement, the velocity is always tangent to the orbit and the centripetal force is directed towards the center. Therefore, there is no net acceleration in the same direction of velocity, which implies that it remains constant.
Answer:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong):</em>
a) a×b = 34.27k
b) a·b = 128.43
c) (a + b)·b = 305.17
d) The component of a along the direction of b = 9.66
Explanation:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong)</em> we can proceed as follows:
a) The vectorial product, a×b is:

b) The escalar product a·b is:

c) <u>Asumming (a</u><u> </u><u>+ b)·b</u> <em>instead a+b·b</em> we have:
![(a + b)\cdot b = [(8.6 + 9.3)i + (5.1 + 9.5)j]\cdot (9.3i + 9.5j) = (17.9i + 14.6j)\cdot (9.3i + 9.5j) = 305.17](https://tex.z-dn.net/?f=%28a%20%2B%20b%29%5Ccdot%20b%20%3D%20%5B%288.6%20%2B%209.3%29i%20%2B%20%285.1%20%2B%209.5%29j%5D%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20%2817.9i%20%2B%2014.6j%29%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20305.17)
d) The component of a along the direction of b is:

I hope it helps you!
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Answer:
55
Explanation:
I hope this answer help u
The cylinder has a volume of 37.46 cubic cm