Answer:
185.49 grams of Zinc would react with 454g (1lb) of copper sulfate
Explanation:
Yo know the following balanced reaction:
CuSO₄(aq)+ Zn(s) →Cu(s) + ZnSO₄(aq)
You can see that by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reagents and products are part of the reaction:
- CuSO₄: 1 mole
- Zn: 1 mole
- Cu: 1 mole
- ZnSO₄: 1 mole
Being:
- Cu: 63.54 g/mole
- S: 32 g/mole
- O: 16 g/mole
- Zn: 65.37 g/mole
the molar mass of the compounds participating in the reaction is:
- CuSO₄:63.54 g/mole + 32 g/mole + 4*16 g/mole= 159.54 g/mole ≅ 160 g/mole
- Zn: 65.37 g/mole
- Cu: 63.54 g/mole
- ZnSO₄: 65.37 g/mole + 32 g/mole + 4*16 g/mole= 161.37 g/mole
Then, by stoichiometry of the reaction, the following amounts of mass of reagent and product participate in the reaction:
- CuSO₄: 1 moles* 160 g/mole= 160 g
- Zn: 1 mole* 65.37 g/mole= 65.37 g
- Cu: 1 mole* 63.54 g/mole= 63.54 g
- ZnSO₄: 1 mole* 161.37 g/mole= 161.37 g
Now you can apply the following rule of three: if 160 grams of CuSO₄ react with 65.37 grams of Zn by this reaction stoichiometry, 454 grams of CuSO₄ with how much mass of Zn will it react?

mass of Zn= 185.49 grams
<u><em>185.49 grams of Zinc would react with 454g (1lb) of copper sulfate</em></u>
Answer:
The liquid collected during distillation when the evaporated substance condenses. A separation technique that uses evaporation to separate substances. The mixture is heated so that one substance evaporates. The vapour is collected and condenses into a liquid.
A neutral carbon doesn't lack any electrons. It has exactly the same number of electrons as it has neutrons.
However, it has four electrons in its outer shell in comparison with eight electrons for a noble gas.
In that sense, it needs four electrons to complete its second shell.<span />
Answer:
Francium (Fr)
Explanation:
From the given choices, francium will have the lowest ionization energy.
Ionization energy is the energy required to remove the most loosely held electron within an atom.
The magnitude of the ionization energy depends on the characteristics of the atom in relation to its nuclear charge, atomic radius, stability etc.
- Generally on the periodic table, ionization energy increases from left to right on the table
- As you go from metals to non-metals and to gases, the value of the ionization energy increases steadily.
- Down the group, the value reduces.
- Since Francium is the most metallic of all the given choices, it has the highest ionization energy.
Ruler is the answer of this question