Volume. Gases and liquids are typically measured in milliliters (mL) or cubic centimeters (cm^3) - both of which are equivalent (1 mL = 1 cm^3).
A) C2H6O1
To find the emperical formula, divide each mole value by the smallest
For carbon, 0.013/0.0065 = 2
For hydrogen, 0.038/0.0065= 6
For oxygen, 0.0065/0.0065= 1
Emperical formula = C2H6O1
<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³
Answer:
a) K = 5.3175
b) ΔG = 3.2694
Explanation:
a) ΔG° = - RT Ln K
∴ T = 25°C ≅ 298 K
∴ R = 8.314 E-3 KJ/K.mol
∴ ΔG° = - 4.140 KJ/mol
⇒ Ln K = - ( ΔG° ) / RT
⇒ Ln K = - ( -4.140 KJ/mol ) / (( 8.314 E-3 KJ/K.mol )( 298 K ))
⇒ Ln K = 1.671
⇒ K = 5.3175
b) A → B
∴ T = 37°C = 310 K
∴ [A] = 1.6 M
∴ [B] = 0.45 M
∴ K = [B] / [A]
⇒ K = (0.45 M)/(1.6 M)
⇒ K = 0.28125
⇒ Ln K = - 1.2685
∴ ΔG = - RT Ln K
⇒ ΔG = - ( 8.314 E-3 KJ/K.mol )( 310 K )( - 1.2685 )
⇒ ΔG = 3.2694
The atoms combine to form compounds to attain stability in nature. The combination of atoms takes place by sharing of electrons between the atoms or complete transfer of electrons from one atom to another. Generally, atoms combine to complete their octet, that is to possess eight electrons in their outer most shell (noble gas configurations) except hydrogen which can attain stability by two electrons in its outer most shell.
Since germanium has 4 electrons in its outer most shell so it needs 4 more electrons to complete its octet and attains the stability. Hydrogen has 1 electron in its outer most shell and it needs only 1 electron to attain stability so, each germanium will combine with 4 hydrogen atoms and thus forming
molecule which is stable in nature.
Hence,
is the formula of the hydride formed by germanium.