Answer:
b. 20 sec
Explanation:
y = y₀ + v₀ t + ½ g t²
0 = 0 + (100) t + ½ (-10) t²
0 = 100t − 5t²
0 = t (100 − 5t)
t = 0, t = 20
The body lands after 20 seconds.
Answer:
a) It takes her 1.43 s to reach a speed of 2.00 m/s.
b) Her deceleration is - 2.50 m/s²
Explanation:
The equation of velocity for an object that moves in a straight line with constant acceleration is as follows:
v = v0 + a · t
Where:
v = velocty.
v0 = initial velocity.
a = acceleration.
t = time.
a) Using the equation of velocity, let´s consider that the car moves in the positive direction. Then:
v = v0 + a · t
2.00 m/s = 0 m/s + 1.40 m/s² · t
t = 2.00 m/s / 1.40 m/s²
t = 1.43 s
It takes her 1.43 s to reach a speed of 2.00 m/s
b) Let´s use again the equation of velocity, knowing that at t = 0.800 s the velocity is 0 m/s:
v = v0 + a · t
0 = 2.00 m/s + a · 0.800 s
-2.00 m/s / 0.800 s = a
a = -2.50 m/s²
Her deceleration is - 2.50 m/s²
They typically represents different wavelengths of element due to its energy emission in the form of visible light. When an electron of that particular element move from a higher energy level down to a lower energy level, it gives off energy in the form of photon emission. Atom of a certain element has a unique electron arrangement thus it can considered that particular element's spectrum is unique.
Answer:
Explanation:
Expression for relative velocity
= 
= (.54 + .82 )c/ 
= 1.36 c / 1.4428
= .94 c
β = .94
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.