Answer:
It takes 77 N
Explanation:
Using Newton's second law of motion, F=ma (Force equals mass times acceleration. Since the mass of the couch is 385 kg and the target acceleration is 0.2 m/s, you simply multiply mass times acceleration (ma) to get the total force, or 77 N.
Answer:
I = 0.0025 kg.m²
Explanation:
Given that
m= 2 kg
Diameter ,d= 0.1 m
Radius ,

R=0.05 m
The moment of inertia of the cylinder about it's axis same as the disc and it is given as

Now by putting the all values

I = 0.0025 kg.m²
Therefore we can say that the moment of inertia of the cylinder will be 0.0025 kg.m².
The Period of the resulting shm will be T=39.7
<u>Explanation:</u>
<u>Given data</u>
m=3kg
d=.06m
k=1200 N/m
Θ=3 °
T=?
we have the formulas,
I = (1/6)Md2
F = ma
F = -kx = -(mω2x)
k = mω2 τ = -d(FgsinΘ)
T=2 x 3.14/ √(m/k)
Solution for the given problem would be,
F=-Kx (where x= dsin Θ)
F=-k dsin Θ
F=-(1200)(.06)sin(3 °)
F=-10.16N
<u>By newton's second law.</u>
F = ma
a= F/m
a=(-10.16N)/3
a=3.38
<u>using the k=mω value</u>
k=mω
ω=k/m
ω=1200/3
ω=400
<u>Using F = -kx value</u>
x = F/-k
x=(-10.16)/1200
x=0.00847m
<u>Restoring the torque value </u>
τ = -dmgsinΘ where( τ = Iα so.).. Iα = -dmgsinΘ α = -(.06)(4)α =
α =(.06)(4)(9.81)sin(4°)
α=-1.781
<u>Rotational to linear form</u>
a = αr
r = .1131 m
a=-1.781 x .1131 m
a=-0.2015233664
<u>Time Period</u>
T=2 x 3.14/ √(m/k)
T=6.28/√(3/1200)
T=6.28/0.158
T=39.7
Answer:
In the reaction you would have 15.0 mols of Y and X.
Explanation:
The stoichiometric coefficents for X and Y are 1 and 2 respectively, if you start the reaction with 10.0 moles of Y you would need 5.0 moles of X in order to achieve a complete reaction so you will have 15.0 total moles in the reaction, assuming no mass loss and no nuclear reactions.