Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Answer:
3.925 mol.
Explanation:
- From the balanced equation:
<em>2 Na₂O₂(s) + 2 H₂O(l) → 4 NaOH(s) + O₂(g)
,</em>
It is clear that 2 moles of Na₂O₂ react with 2 moles of H₂O to produce 4 moles of NaOH and 1 mole of O₂
.
<em>Using cross multiplication:</em>
4 moles of NaOH produced with → 1 mole of O₂
.
15.7 moles of NaOH produced with → ??? mole of O₂
.
<em>∴ The no. of moles of O₂ made =</em> (1 mole)(15.7 mole)/(4 mole) = <em>3.925 mol.</em>
Answer:
yes as you wish
Explanation:
but why have u asked this
Explanation:
kinetic energy?? idek hope I helped in anyway possible