The molar mass of Sb2S3 is approximately equal to 339.7 g/mol. We calculate the number of moles of Sb2S3 by dividing the given mass by the molar mass.
n = 23.5 g / (339.7 g/mol)
n = 0.0692 mols
To calculate for the number of formula units, we multiply the number of mols by the Avogadro's number,
number of formula units = (0.0692 mols)(6.022 x 10^3)
= 4.167 x 10^22 formula units
what grade is this because apparently i like to know what grade it is before i solve it
Mn+2 is cation and CO3 is anion
hope it help
Answer:
Case 1:
X = Any element from Group I
i) H
ii) Li
iii) Na
iv) K
v) Rb
vi) Cs
Y = 1
Case 2:
X = Any element from Group II
i) Be
ii) Mg
iii) Ca
iv) Sr
v) Ba
vi) Ra
Y = 2
Case 3:
X = Any element from Group III
i) B
ii) Al
iii) Ga
iv) In
v) Ti
Y = 3
Explanation:
The general formula given is as follow,
XCly
So, if X has +1 oxidation state, then it will require only one Cl atom with oxidation number -1 to form a neutral compound, therefore, y = 1.
If X has +2 oxidation state, then it will require two Cl atoms with oxidation number -1 to form a neutral compound, therefore, y = 2.
If X has +3 oxidation state, then it will require three Cl atoms with oxidation number -1 to form a neutral compound, therefore, y = 3.