The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
we have to use newtons law of gravitation which is
F=GMm/r^2
G=6.67 x 10^<span>-11N kg^2/m^2
</span>M=<span>(15kg)
</span>m=15 kg
r=(3.0m)^2<span>
</span>putting values we have
<span>=(6.67 x 10^-11N kg^2/m^2)(15kg)(15kg)/(3.0m)^2 </span>
=1.67 x 10^-9N
Kinetic energy is defined as the energy of motion. On the other hand, potential energy is the energy of non-motion.
Hope that helped =)
Answer:
a) La aceleración angular es: 
b) El engranaje gira 125 radianes.
c) El engranaje hara aproximadamente 20 revoluciones.
Explanation:
a)
La aceleración angular se define como:

Donde:
- Δω es la diferencia de velocidad angular (en otras palabras ω(final)-ω(inicial))
- Δt es el tiempo en el que occure el cambio de velocidad angular


b)
El desplazamiento angular puede ser calculado usando la siguiente ecuación:

Aqui el angulo inicial es 0, por lo tanto.


El engranaje gira 125 radianes.
c)
Lo que debemos hacer aquí es convertir radianes a revoluciones.
Recordemos que 2π rad = 1 rev
Entonces:

Por lo tanto el engranaje hara aproximadamente 20 revoluciones.
Espero te haya sido de ayuda!
Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph

<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph

<u>3. Addition:</u>
You add the corresponding components:

To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse: