Answer: That you are dressed appropriately, to speak in a formal manner, and to be confident in your answers.
Answer:
Thank you for this!
Explanation:
I was about to click it on a question I saw.
Answer:
R = 148.346 N
M₀ = - 237.2792 N-m
Explanation:
Point O is selected as a convenient reference point for the force-couple system which is to represent the given system
We can apply
∑Fx = Rx = - 60N*Cos 45° + 40N + 80*Cos 30° = 66.8556 N
∑Fy = Ry = 60N*Sin 45° + 50N + 80*Sin 30° = 132.4264 N
Then
R = √(Rx²+Ry²) ⇒ R = √((66.8556 N)²+(132.4264 N)²)
⇒ R = 148.346 N
Now, we obtain the moment about the origin as follows
M₀ = (0 m*40 N)-(7 m*60 N*Sin 45°)+(4 m*60 N*Cos 45°)-(5 m*50 N)+ 140 N-m + (0 m*80 N*Cos 30°) + (0 m*80 N*Sin 30°) = - 237.2792 N-m (clockwise)
We can see the pic shown in order to understand the question.
Answer:
a) W = 25.5 lbf
b) W = 150 lbf
Explanation:
Given data:
Mass of astronaut = 150 lbm
local gravity = 5.48 ft/s^2
a) weight on spring scale
it can be calculated by measuring force against local gravitational force which is equal to weight of body
W = mg

b) As we know that beam scale calculated mass only therefore no change in mass due to variation in gravity
thus W= 150 lbf
Answer:
Chemical Engineer,Geological Engineer,Aerospace Engineer
Explanation: