Because if you have a liquid then you need a glass to keep it together and when it is a solid it is already together so you don't need to do anything
Answer:
Mostly Para
Explanation:
First, let's assume that the molecule is the toluene (A benzene with a methyl group as radical).
Now the nitration reaction is a reaction in which the nitric acid in presence of sulfuric acid, react with the benzene molecule, to introduce the nitro group into the molecule. The nitro group is a relative strong deactiviting group and is metha director, so, further reactions that occur will be in the metha position.
Now, in this case, the methyl group is a weak activating group in the molecule of benzene, and is always ortho and para director for the simple fact that this molecule (The methyl group) is a donor of electrons instead of atracting group of electrons. Therefore for these two reasons, when the nitration occurs,it will go to the ortho or para position.
Now which position will prefer to go? it's true it can go either ortho or para, however, let's use the steric hindrance principle. Although the methyl group it's not a very voluminous and big molecule, it still exerts a little steric hindrance, and the nitro group would rather go to a position where no molecule is present so it can attach easily. It's like you have two doors that lead to the same place, but in one door you have a kid in the middle and the other door is free to go, you'll rather pass by the door which is free instead of the door with the kid in the middle even though you can pass for that door too. Same thing happens here. Therefore the correct option will be mostly para.
To fully understand the problem, we use the ICE table to identify the concentration of the species. We calculate as follows:
Ka = 2.0 x 10^-9 = [H+][OBr-] / [HOBr]
HOBr = 0.50 M
KOBr = 0.30 M = OBr-
<span> HOBr + H2O <-> H+ + OBr- </span>
<span>I 0.50 - 0 0.30 </span>
<span>C -x x x
</span>---------------------------------------------
<span>E(0.50-x) x (0.30+x) </span>
<span>Assuming that the value of x is small as compared to 0.30 and 0.50 </span>
<span>Ka = 2.0 x 10^-9 = x (0.30) / 0.50) </span>
<span>x = 3.33 x 10^-9 = H+</span>
pH = 8.48
A combustion reaction of an will generally produce CO2 and H20 -- carbon dioxide and water and/or an oxide
looking at the combustion material C2H2, you know that the end products will be CO2 and H20, so the question is how much of each will you get
well, look at the total amount of carbon atoms, 2 C2, which means a total of 4 carbon atoms in this reaction, since only CO2 has carbon atoms, that means there must be 4 CO2 as an end product and 4 CO2 will use up 4 of 5 O2 molecule leaving only 1 O2 molecule for the H2 reaction.
now O2 has a total of 2 oxygen molecules whereas H20 has only a single oxygen molecule, hence the end product must have 2 H20
check that the H atoms balance out on both sides
Answer:
A. electromagnetic energy.
B. thermal energy.
C. solar energy.
D. mechanical energy.
Explanation: