Answer:
Yes! Thinking about it graphically a position vs time graph models meters per second in most cases, making every point on the line have the units m/s. If we want the find the slope we are finding the change between each point and those units would change to m/s/s or m/s^2 giving us the same units for acceleration. Simply put, slope of a velocity graph gives us acceleration.
Explanation:
8/4 = y/y-x
8y - 8x = 4y
y = 2x
y = 2 x 4
y = 8
Hope this helps
v^2 = v0^2 +2ad
v^2 = 22^2 + 2*3.78*45 = 824.2
v= √824.2 = 28.7 m/s
Answer:
Explanation:
The rotation rate of the man is:
The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
The final angular speed is:
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have: