1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Law Incorporation [45]
3 years ago
6

A car of mass 600 Kg is moving at 15m/s. Calculate its momentum.

Physics
1 answer:
mr_godi [17]3 years ago
3 0
Mass=600kg
Velocity =15m/s
Momentum(p)=?
Now,
P=mass x velocity
=600x15
=9000kgm/s
You might be interested in
What is the relationship between the force of gravity between two objects in regard to their mass and the distance between them?
Mashcka [7]

Answer:

hi

Explanation:

5 0
3 years ago
Examine the images of the Grand Canyon below. Notice that most of the canyon consists of layers of sedimentary rocks, but if you
Tomtit [17]

Intense temperature and pressure of regional metamorphism

Explanation:

The process that cause the formation of the Vishnu Schist is the intense temperature and pressure as a result of regional metamorphism.

  • Regional metamorphism is an extensive metamorphism of an area as a result of temperature and pressure changes.
  • The schist is a foliated metamorphic rock usually found in areas of moderate to high grade temperature and pressure.
  • The Vishnu schist must have been metamorphosed before the new sediments were deposited on top.

Learn more:

Contact metamorphism brainly.com/question/1970623

#learnwithBrainly

7 0
3 years ago
A 120 g, 8.0-cm-diameter gyroscope is spun at 1000 rpm and allowed to precess. What is the precession period?
dolphi86 [110]

To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

I = MR^2

Here,

M = Mass

R = Radius of the hoop

The precession frequency is given as

\Omega = \frac{Mgd}{I\omega}

Here,

M = Mass

g= Acceleration due to gravity

d = Distance of center of mass from pivot

I = Moment of inertia

\omega= Angular velocity

Replacing the value for moment of inertia

\Omega= \frac{MgR}{MR^2 \omega}

\Omega = \frac{g}{R\omega}

The value for our angular velocity is not in SI, then

\omega = 1000rpm (\frac{2\pi rad}{1 rev})(\frac{1min}{60s})

\omega = 104.7rad/s

Replacing our values we have that

\Omega = \frac{9.8m/s^2}{(8*10^{-2}m)(104.7rad)}

\Omega = 1.17rad/s

The precession frequency is

\Omega = \frac{2\pi rad}{T}

T = \frac{2\pi rad}{\Omega}

T = \frac{2\pi}{1.17}

T = 5.4 s

Therefore the precession period is 5.4s

7 0
3 years ago
Why type of energy is present after a solar panel changes forms?
NNADVOKAT [17]

Explanation:

Solar technologies convert sunlight into electrical energy either through photovoltaic (PV) panels or through mirrors that concentrate solar radiation. This energy can be used to generate electricity or be stored in batteries or thermal storage.

8 0
2 years ago
Read 2 more answers
You can think of the work-kinetic energy theorem as the second theory of motion, parallel to Newton's laws in describing how out
kiruha [24]

Answer:

a) 4 289.8 J

b) 4 289.8 J

c) 6 620.1 N

d) 411 186.3 m/s^2

e) 6 620.1 N

Explanation:

Hi:

a)

The kinetic energy of the bullet is given by the following formula:

K = (1/2) m * v^2

With

    m = 16.1 g = 1.61 x 10^-2 kg

     v = 730 m/s

K = 4 289.8 J

b)

the work-kinetic energy theorem states that the work done on a system is the same as the differnce in kinetic energy of the same. Since the initial state of the bullet was at zero velocity (it was at rest)  Ki = 0, therefore:

W = ΔK = Kf - Ki  = 4 289.8 J

c)

The work done by a force is given by the line intergarl of the force along the trayectory of the system (in this case the bullet).

If we consider a constant force (and average net force) directed along the trayectory of the bullet, the work and the force will be realted by:

W = F * L

Where F is the net force and L is the length of the barrel, that is:

F = (4 289.8 J) / (64.8 cm) = (4 289.8 Nm) / (0.648 m) = 6620.1 N

d)

The acceleration can be found dividing the force by the mass:

a = F/m = (6620.1 N) /(16.1 g) = 411 186.3 m/s^2

e)

The force will have a magnitude equal to c) and direction along the barrel towards the exit

5 0
3 years ago
Other questions:
  • The half-life of a radioisotope is 6.0 hours. Approximately how long will it take for the activity of a sample to be reduced by
    14·1 answer
  • A piece of curved glass has a radius of curvature of r = 10.8 m and is used to form Newton's rings, as in the drawing. Not count
    7·2 answers
  • A glider with mass m = 0.230 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 4.50
    8·1 answer
  • Which statement is true for electric field lines?
    12·2 answers
  • Placement.
    11·1 answer
  • Do atoms ever touch​
    10·2 answers
  • Which of these objects has memetic energy
    12·1 answer
  • Please help its due today and im literally crying bc im sooooo stressed out
    5·1 answer
  • ACUTE INFECTION plz help worth 70 pt plz help !!!!! Also brainlest
    5·1 answer
  • Two small nonconducting spheres have a total charge of Q = Q1 +Q2 = 91.0 pC, Q1 < Q2. When placed 32.0 cm apart, the force ea
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!