Answer:
a) KE = 888.26J
b) N = 294.5 turns
Explanation:
For the kinetic energy:

The inertia is:

So, the kinetic energy will be:

Now, friction force is:
Ff = μ*N = 0.80*5N = 4N
The energy balance would be:
Kf - Ko = Wf where Kf=0; Ko = 888.26J; and Wf is the work done by friction force.
Wf = -Ff*d = -Ff*N*2*π*R where N is the amount of turns it gives.
Replacing these values into the energy balance:
0-888.26=-4*N*2*π*0.12
-888.26=-0.96*π*N
N=294.5 turns
The answer is D) Velocity
Everywhere particles dont stay in one place they move elsewhere
Answer:
x=2d
Explanation:
initial stretch in the spring is d
so using Hook's law
at equilibrium position
k×d=mg
where k= spring constant
m= mass of fish
g= acceleration due to gravity.
d=mg/k ................ (1)
in second case by energy conservation
1/2 kx^2=mgx
x=2mg/k
using equation 1
x=2d
The resistance of a wire is directly proportional to the length of the wire. That is the longer the length of the wire, the higher the resistance and the shorter the length of the wire, the smaller the resistance.