Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
The answer is B) region of high pressure in a medium caused by a passing wave
Compression is the forcing of the molecules of a medium, be it water, air, or something else, as a wave passes by. This forcing together of the molecules raises the pressure of the medium in the area that the wave passes through.
Answer:
.
Explanation:
By Newton's Second Law, the acceleration
of an object is proportional to the net force
on it. In particular, if the mass of the object is
, then
.
Rewrite this equation to obtain:
.
In this case, the assumption is that the
force is the only force that is acting on the object. Hence, the net force
on the object would also be
Make sure that all values are in their standard units. Forces should be in Newtons (same as
, and the acceleration of the object should be in meters-per-second-squared (
). Apply the equation
to find the mass of the object.
.
Answer: D
Explanation: The chemical bonds in the food store energy that is released when we eat it.
The answer would be B the temperature of the juice was the temperature of the surrounding air