1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
6

Which of the following best describes how nuclear decay rates can be altered?

Physics
1 answer:
maria [59]3 years ago
7 0
B. Your welcome I just found it
You might be interested in
In Ørsted’s observation, the current-carrying wire acted like a
hichkok12 [17]
B, C. Also literally a quick search yielded these results, roughly half the time to type this out. 
6 0
3 years ago
Read 2 more answers
What total distance will a sound wave travel in air in 3.00 seconds at stp?
dimaraw [331]
At stp conditions (T=0^{\circ}C), the speed of sound is
v=331.2 m/s
The sound wave moves by uniform motion, so we can use the basic relationship between space, time and velocity:
S=vt
where S is the distance covered by the sound wave in a time t. In our problem, t=3.00 s, therefore the distance covered by the sound wave is
S=vt=(331.2 m/s)(3.00 s)=993.6 m
4 0
3 years ago
A 10.0-cm-long uniformly charged plastic rod is sealed inside a plastic bag. The net electric flux through the bag is 7.50 × 10
Rina8888 [55]

Answer:

66.375 x 10⁻⁶ C/m

Explanation:

Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as ;

∅ = Q / ε₀        -----------------(i)

Where;

∅ = 7.5 x 10⁵ Nm²/C

ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²

Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;

7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)

Solve for Q;

Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²

Q = 66.375 x 10⁻⁷ C

Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e

L = Q / l     ----------------------(ii)

Where;

Q = 66.375 x 10⁻⁷ C

l = length of the rod = 10.0cm = 0.1m

Substitute these values into equation (ii) as follows;

L = 66.375 x 10⁻⁷C / 0.1m

L = 66.375 x 10⁻⁶ C/m

Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.

3 0
3 years ago
Each of the gears a and b has a mass of 675 g and has a radius of gyration of 40 mm, while gear c has a mass of 3. 6 kg and a ra
navik [9.2K]

9.87 seconds

The time required for this system to come to rest is equal to 9.87 seconds.

We have the following data:

Mass of gear A = 675 g to kg = 0.675 kg.

Radius of gear A = 40 mm to m = 0.04 m.

Mass of gear C = 3.6 kg.

Radius of gear C = 100 mm to m = 0.1 m.

How can I calculate the time needed?

We would need to figure out the moment of inertia for gears A and C in order to compute the time needed for this system to come to rest.

Mathematically, the following formula can be used to determine the moment of inertia for a gear:

I = mr²

Where:

m is the mass.

r is the radius.

We have, For gear A:

I = mr²

I = 0.675 × 0.04²

I = 0.675 × 0.0016

I = 1.08 × 10⁻³ kg·m².

We have, For gear C:

I = mr²

I = 3.6 × 0.1²

I = 3.6 × 0.01

I = 0.036 kg·m².

The initial angular velocity of gear C would therefore be converted as follows from rotations per minute (rpm) to radians per second (rad/s):

ωc₁ = 2000 × 2π/60

ωc₁ = 4000π/60

ωc₁ = 209.44 rad/s.

Also, the initial angular velocity of gears A and B is given by:

ωA₁ = ωB₁ = rc/rA × (ωc₁)

ωA₁ = ωB₁ = 0.15/0.06 × (209.44)

ωA₁ = ωB₁ = 2.5 × (209.44)

ωA₁ = ωB₁ = 523.60 rad/s.

Taking the moment about A, we have:

I_A·ωA₁ + rA∫F_{AC}dt - M(f)_A·t = 0

On Substituting the given parameters into the formula, we have;

(1.08 × 10⁻³)·(523.60) + 0.06∫F_{AC}dt - 0.15t = 0

0.15t - 0.06∫F_{AC}dt = 0.56549   ----->equation 1.

Similarly, the moment about B is given by:

0.15t - 0.06∫F_{BC}dt = 0.56549    ------>equation 2.

Note: Let x = ∫F_{BC}dt + ∫F_{AC}dt

Adding eqn. 1 & eqn. 2, we have:

0.3t - 0.06x = (0.56549) × 2

0.3t - 0.06x = 1.13098  ------>equation 3.

Taking the moment about A, we have:

Ic·ωc₁ - rC∫F_{AC}dt - rC∫F_{BC}dt - Mc(f)_A·t = 0

0.036(209.44) - 0.3t - 0.15(∫F_{BC}dt + ∫F_{AC}dt) = 0

0.3t + 0.15x = 7.5398    ------->equation 4.

Solving eqn. 3 and eqn. 4 simultaneously, we have:

x = 30.5 Ns.

Time, t = 9.87 seconds.

To learn more about moment of inertia visit:

brainly.com/question/15246709

#SPJ4

6 0
2 years ago
How would you calculate an object’s mechanical energy? a. Add its kinetic and potential energies. b. Multiply its kinetic and po
dalvyx [7]
A. Add it's Kinetic and Potential energies
6 0
3 years ago
Read 2 more answers
Other questions:
  • Radiation is energy that is (5 points) not transferred at all transferred by direct contact of two objects transferred by moving
    8·1 answer
  • To test the resiliency of its bumper during low-speed collisions, a 3 690-kg automobile is driven into a brick wall. The car's b
    7·1 answer
  • Why is Mars surface temperature so low?
    12·2 answers
  • A room has dimensions 3.00 m (height) 3.70 m 4.30 m. A fly starting at one corner flies around, ending up at the diagonally oppo
    13·1 answer
  • Consider the medium of air as defined by the use of radio frequency. What made some of the early standards so slow compared to t
    15·1 answer
  • According to the Holland Codes, which career is best suited to someone who scored highest in the investigative category?
    8·1 answer
  • What was the purpose of the 1996 Columbia NASA launch?​
    15·1 answer
  • Iron's ability to rust is not a physical property because
    7·2 answers
  • a 13kg block is at rest on a level floor. A 400 g glob of putty is thrown at the block so that the putty travels horizontally, h
    9·1 answer
  • [sorry im doing this again] When does an electrically charged object attract another object?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!