1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
2 years ago
15

Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.

Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be 1.30×104 kg/m3 at the center and 2100 kg/m3 at the surface. Part A What is the acceleration due to gravity at the surface of this planet?
Physics
1 answer:
elena-s [515]2 years ago
4 0

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

You might be interested in
A 90. 0-kg ice hockey player hits a 0. 150-kg puck, giving the puck a velocity of 45. 0 m/s. If both are initially at rest and i
Mice21 [21]

The distance traveled by the hockey player is 0.025 m.

<h3>The principle of conservation of linear momentum;</h3>
  • The principle of conservation of linear momentum states that, the total momentum of an isolated system is always conserved.

The final velocity of the hockey play is calculated by applying the principle of conservation of linear momentum;

m_1v_1 = m_2 v_2\\\\v_1 = \frac{m_2 v_2}{m_1} \\\\v_1 = \frac{0.150 \times 45}{90} \\\\v_1 = 0.075 \ m/s

The time taken for the puck to reach 15 m is calculated as follows;

t = \frac{d}{v} \\\\t = \frac{15\ m}{45 \ m/s} \\\\t = 0.33 \ s

The distance traveled by the hockey player at the calculated time is;

d = vt\\\\d = 0.075 \ m/s \ \times 0.33 \ s\\\\d = 0.025 \ m

Learn more about conservation of linear momentum here: brainly.com/question/7538238

4 0
2 years ago
Which statement best describes why an island's food web could be considered a closed system?
garik1379 [7]
I would say Option B) because Option C) is wrong since matter cannot be created. A closed system does not exchange matter so it's not Option D). Since an island is an isolated area, Option A) is wrong.
3 0
3 years ago
Read 2 more answers
Atomic math challenge will give brainly and thanks
nevsk [136]

Answer:

1. Hydrogen

Atomic # = 1

Atomic Mass = 1.00794  ( If you round it it's 1.008 )

# of protons = 1

# of neutrons = none

# of electrons = 1

8 0
3 years ago
Read 2 more answers
If it requires 7.0 j of work to stretch a particular spring by 2.1 cm from its equilibrium length, how much more work will be re
SVEN [57.7K]
4.6 j more. To get this take 7 and multiply it by 3.5 to get 24.5 take the x which is what you’re looking for and multiply it by the 2.1 to get 2.1x. Take 24.5 and divide it by 2.1 x and get 11.6. Subtract 11.6 by 7 and get 4.6
8 0
2 years ago
Jane is sliding down a slide. What kind of motion is she demonstrating?
Over [174]
When Jane is sliding down a slide, she is demonstrating translational motion. 
5 0
3 years ago
Other questions:
  • Which sentence correctly describes a friction force? A. It acts in the same direction as the motion of an object. B. It acts in
    14·1 answer
  • A note has a wavelength of 0.77955 m. If the speed of sound is 343.00 m/s, what pitch is this note?
    13·1 answer
  • A lead ball is dropped into a lake from a diving board 6.10 mm above the water. After entering the water, it sinks to the bottom
    10·2 answers
  • A child rides her bike at a rate of 12.0 km/hr down the street. A squirrel suddenly runs in front of her so she applies the brak
    6·2 answers
  • A large, cylindrical water tank with diameter 2.40 mm is on a platform 2.00 mm above the ground. The vertical tank is open to th
    5·1 answer
  • An astronaut weighing 190 lbs on Earth is on a mission to the Moon and Mars.
    9·1 answer
  • Help! Help!
    14·1 answer
  • Which part of the water cycle is where vapor from plants leaves the plants as they breath?
    15·2 answers
  • PLEASE HELP ANSWER THIS QUESTION !
    8·1 answer
  • Which of these diagrams best represents the steps in the formation of the sun?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!