1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
15

Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.

Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be 1.30×104 kg/m3 at the center and 2100 kg/m3 at the surface. Part A What is the acceleration due to gravity at the surface of this planet?
Physics
1 answer:
elena-s [515]3 years ago
4 0

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

You might be interested in
What should be the spring constant k of a spring designed to bring a 1200 kg car to rest from a speed of 85 km/h so that the occ
borishaifa [10]

Answer:

k = 5178.8 N/m

Explanation:

As we know that spring mass system will oscillate at angular frequency given as

\omega = \sqrt{\frac{k}{m}}

now we have

\omega = \sqrt{\frac{k}{1200}}

now the maximum acceleration of the spring block system is at its maximum compression state which is given as

a = \omega^2 A

here A= maximum compression of the spring

so here in order to find maximum compression of the spring we will use energy conservation as we know that initial total kinetic energy of the car will convert into spring potential energy

\frac{1}{2}mv^2 = \frac{1}{2}kA^2

here we know that

v = 85 km/h

v = 85 \times\frac{1000}{3600} = 23.61 m/s

now we have

(1200)(23.61^2) = kA^2

A^2 = \frac{6.68 \times 10^5}{k}

now from above equation of acceleration we have

5.0 g = (\frac{k}{m})\sqrt{\frac{6.68 \times 10^5}{k}}

5.0(9.81) = \sqrt{k}(0.68)

k = 5178.8 N/m

6 0
3 years ago
What is the main reason why many nuclear power plants are located near bodies of water? to wash wastes out of the power plant to
Natalija [7]

Answer: to avoid problems with water supply

Explanation: power plant needs water to run

7 0
3 years ago
Read 2 more answers
Use the image below to answer the following question (ruler not to scale).
Svetradugi [14.3K]

Answer:

it depends on wether the + and - are facing eachother

or away from eachother

Explanation:

4 0
3 years ago
Read 2 more answers
The table below shows data of sprints of animals that traveled 75 meters. At each distance marker, the animals' times were recor
Sophie [7]

Answer:

i think its animal 4

Explanation:

7 0
4 years ago
Read 2 more answers
a metallic cube whose each side is 10 cm is subjected to a shearing force of 100 kg. The top force is displaced through 0.25 cm
baherus [9]

Answer:

9.8×104Nm−2,0.025,3.92×106Nm−2

Solution :

Here, L=10cm=10×10−2m

F=100kgf=100×9.8N

ΔL=0.25cm=0.25×10−2m,

Shearing stress =FL2=100×9.8(10×10−2) Sheraing strain =ΔLL=0.25×10−210×10−2 = 0.025 Shear Modulus of elasticity, G=Shearing stressShearing strain=9.8×1040.025

=3.92×106Nm−2

Explanation:

8 0
3 years ago
Other questions:
  • What happens to the force between two objects if the masses of both the objects are doubled
    13·1 answer
  • A train is approaching you at very high speed as you stand next to the tracks. Just as an observer on the train passes you, you
    13·1 answer
  • Why does a hot air balloon float?
    8·2 answers
  • Due to the tilt of the Earth's axis,
    8·1 answer
  • Water behind a dam has a certain amount of stored energy that can be released as the water falls over the top of the dam. It may
    10·1 answer
  • What type of force is Ft?
    13·2 answers
  • A book is sitting on the dashboard of a car that is stopped at a traffic light as the car starts to move forward the book slides
    15·1 answer
  • This force will cause the path of the particle to curve. Therefore, at a later time, the direction of the force will ___________
    7·1 answer
  • 9.2 True/False Questions
    7·1 answer
  • Which of the following is NOT a vector quantity?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!