1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
15

Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.

Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be 1.30×104 kg/m3 at the center and 2100 kg/m3 at the surface. Part A What is the acceleration due to gravity at the surface of this planet?
Physics
1 answer:
elena-s [515]3 years ago
4 0

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

You might be interested in
Plzz help! A stationary speed gun emits a
baherus [9]

Answer:

The speed of the baseball is approximately 19.855 m/s

Explanation:

From the question, we have;

The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz

The change in the frequency of the returning wave, Δf = +3190 Hz higher

The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;

 \dfrac{\Delta f}{f} = \dfrac{2 \cdot v_{baseball}}{c}

\therefore{\Delta f}{} = \dfrac{2 \cdot v_{baseball}}{c} \times f

Where;

Δf = The change in frequency observed, known as the beat frequency = 3190 Hz

v_{baseball} = The speed of the baseball

c = The speed of light = 3.0 × 10⁸ m/s

f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz

By plugging in the values, we have;

\therefore{\Delta f} = 3190 \ Hz =  \dfrac{2 \cdot v_{baseball}}{3.0 \times 10^8 \ m/s} \times 2.41 \times 10^{10} \ Hz

v_{baseball} = \dfrac{3190 \ Hz \times 3.0 \times 10^8 \ m/s }{2.41 \times 10^{10} \ Hz \times 2} \approx 19.855 \ m/s

The speed of the baseball, v_{baseball} ≈ 19.855 m/s

3 0
3 years ago
Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
Bond [772]

To solve this problem it is necessary to apply the concepts related to rate of thermal conduction

\frac{Q}{t} = \frac{kA\Delta T}{d}

The letter Q represents the amount of heat transferred in a time t, k is the thermal conductivity constant for the material, A is the cross sectional area of the material transferring heat, \Delta T, T is the difference in temperature between one side of the material and the other, and d is the thickness of the material.

The change made between glass and air would be determined by:

(\frac{Q}{t})_{glass} = (\frac{Q}{t})_{air}

k_{glass}(\frac{A}{L})_{glass} \Delta T_{glass} = k_{air}(A/L)_{air} \Delta T_{air}

\Delta T_{air} = (\frac{k_{glass}}{k_{air}})(\frac{L_{air}}{L_{glass}}) \Delta T_{glass}

\Delta T_{air} = (\frac{0.84}{0.0234})(\frac{5}{4}) \Delta T_{glass}

\Delta T_{air} = 44.9 \Delta T_{glass}

There are two layers of Glass and one layer of Air so the total temperature would be given as,

\Delta T = \Delta T_{glass} +\Delta T_{air} +\Delta T_{glass}

\Delta T = 2\Delta T_{glass} +\Delta T_{air}

20\°C = 46.9\Delta T_{glass}

\Delta T_{glass} = 0.426\°C

Finally the rate of heat flow through this windows is given as,

\Delta {Q}{t} = k_{glass}\frac{A}{L_{glass}}\Delta T_{glass}

\Delta {Q}{t} = 0.84*24*10 -3*0.426

\Delta {Q}{t} = 179W

Therefore the correct answer is D. 180W.

3 0
3 years ago
A stone is thrown vertically into the air at an initial velocity of 96 ft/s. On Mars, the height s (in feet) of the stone above
vladimir1956 [14]

Answer:

240 ft

Explanation:

t = Time taken

u = Initial velocity = 96 ft/s

v = Final velocity

s = Displacement

a = Acceleration = 12 m/s² on Mars 32 ft/s² on Earth negative due to upward direction

Mars

s=ut+\frac{1}{2}at^2\\\Rightarrow s=96\times t+\frac{1}{2}\times -12\times t^2\\\Rightarrow s=96t-6t^2\ ft

Earth

s=ut+\frac{1}{2}at^2\\\Rightarrow s=96\times t+\frac{1}{2}\times -32\times t^2\\\Rightarrow s=96t-16t^2\ ft

Differentiating the first equation with respect to time we get

\frac{ds}{dt}=96-12t

Equating with zero

0=96-12t\\\Rightarrow t=\frac{96}{12}=8\ s

Differentiating the second equation with respect to time we get

\frac{ds}{dt}=96-32t

Equating with zero

0=96-32t\\\Rightarrow t=\frac{96}{32}=3\ s

Applying the time taken to the above equations, we get

s=96t-6t^2\ ft\\\Rightarrow s=96\times 8-6\times 8^2\\\Rightarrow s=384

s=96t-16t^2\\\Rightarrow s=96\times 3-16\times 3^2\\\Rightarrow s=144

Difference in height = 384-144 = 240 ft

The stone will travel 240 ft higher on Mars

6 0
3 years ago
Are outer planets gaseous
bija089 [108]

Answer:

Yes

Explanation:

The four outer planets are all gas giants made primarily of hydrogen and helium. They have thick gaseous outer layers and liquid interiors.

6 0
3 years ago
How does the structure of the stigma aid in pollination
natali 33 [55]
<span>Pollination is the process by which pollen is transferred to the female part of a plant. The stigma is the central part of the flower, that is supported by a style and is part of the female reproductive organ within plants. Its structure is optimised to promote pollination by having hairs, sticky surfaces and three-dimensional sculptures that capture and trap pollen.</span>
5 0
3 years ago
Other questions:
  • If you drop a ball off a cliff, it starts out a 0 m/s. After 1 s, it will be traveling at about 10 m/s. If air resistance is rem
    10·2 answers
  • Two rowers, who can row at the same speed in still water, head across a river. . . The first rower (Alice) heads straight across
    11·1 answer
  • How will the charge on the balloons affect their behavior? explain your reasoning
    7·2 answers
  • The idea that life could spring from nonliving matter is called?
    11·1 answer
  • An athlete is working out in the weight room.he steadily holds 50 kilograms above his head for 10 seconds which statement is tru
    5·1 answer
  • A charge is accelerated from rest through a potential difference V and then enters a uniform magnetic field oriented perpendicul
    8·1 answer
  • At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant accele
    15·1 answer
  • A spaceship moving with an initial velocity of 58.0 meters/second experiences a uniform acceleration and attains a final velocit
    5·1 answer
  • A student shines a mixture of red and blue light onto a blue toy car. What colour will the car appear?
    14·1 answer
  • Which of the following will cause water to change to ice!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!