Answer:
Stellar black holes form when the center of a very massive star collapses in upon itself.
Answer:
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. ... Forces only exist as a result of an interaction.
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where is the body's emissivity
(the value we want to find)
Isolating from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency
Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula
Hence, The frequency is 302.05 Hz.
Answer:
T = 0.017s
Explanation:
period is the time it takes a particle to make one oscillation
An electric current is periodic in nature
The current reaches 3.8A ten times.
So there must have been 10 cycles (10 periods) in 0.17s. let 'T' be the period:
t is the total time interval
n is the number of oscillations
10T = 0.17
T = 0.17/10 = 0.017s