1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
7

The basic methods and techniques used by psychologists to investigate human behavior?

Physics
1 answer:
Stels [109]3 years ago
6 0
Telepathy duhh like when SpongeBob stared at Patrick he know they where thinking the same thing or maybe that was because they are both idiots i dont know  <span />
You might be interested in
Which group of types of light is listed in order of increasing frequency? which group of types of light is listed in order of in
never [62]
Your answer is infrared, visible, ultraviolet. 
6 0
3 years ago
A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.
andreev551 [17]

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}

Energy

\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})

m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}

Where:

m_{1}, m_{2} - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

v_{1,o}, v_{2,o} - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

v_{1}, v_{2} - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If m_{1} = 0.400\,kg, m_{2} = 0.900\,kg, v_{1,o} = +5.86\,\frac{m}{s}, v_{2,o} = 0\,\frac{m}{s}, the system of equation is simplified as follows:

2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}

13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}

Let is clear v_{1,f} in first equation:

0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}

v_{1,f} = 5.86-2.25\cdot v_{2,f}

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}

13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}

13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}

2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0

2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0

There are two solutions:

v_{2,f} = 0\,\frac{m}{s} or v_{2,f} = 3.606\,\frac{m}{s}

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: (v_{2,f} = 3.606\,\frac{m}{s})

v_{1,f} = 5.86-2.25\cdot (3.606)

v_{1,f} = -2.254\,\frac{m}{s}

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

3 0
3 years ago
You pull a solid nickel ball with a density of 8.91 g/cm3 and a radius of 1.40 cm upward through a fluid at a constant speed of
Sunny_sXe [5.5K]

Answer:

P = 1.090\,N

Explanation:

The constant speed means that ball is not experimenting acceleration. This elements is modelled by using the following equation of equilibrium:

\Sigma F = P - W + F_{D}

\Sigma F = P - \rho \cdot V \cdot g + c\cdot v = 0

Now, the exerted force is:

P = \rho \cdot V \cdot g - c\cdot v

The volume of a sphere is:

V = \frac{4\cdot \pi}{3}\cdot R^{3}

V = \frac{4\cdot \pi}{3}\cdot (0.014\,m)^{3}

V = 1.149\times 10^{-5}\,m^{3}

Lastly, the force is calculated:

P = (8910\,\frac{kg}{m^{3}} )\cdot (1.149\cdot 10^{-5}\,m^{3})\cdot (9.81\,\frac{m}{s^{2}} )+(0.950\,\frac{kg}{s})\cdot (0.09\,\frac{m}{s} )

P = 1.090\,N

5 0
3 years ago
When cars are equipped with flexible bumpers, they will bounce off each other during low-speed collisions, thus causing less dam
Len [333]

Answer:

Explanation:

Given that,

Mass of the heavier car m_1 = 1750 kg

Mass of the lighter car m_2 = 1350 kg

The speed of the lighter car just after collision can be represented as follows

m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\v_2=\frac{m_1u_1+m_2u_2-m_1v_1}{m_2}

v_2=\frac{(1850)(1.4)+(1450)(-1.10)-(1850)(0.250)}{1450} \\\\=\frac{2590+(-1595)-(462.5)}{1450} \\\\=\frac{2590-1595-462.5}{1450} \\\\=\frac{532.5}{1450}\\\\=0.367m/s

b) the change in the combined kinetic energy of the two-car system during this collision

\Delta K.E=(\frac{1}{2} m_1v_1^2+\frac{1}{2} m_2v_2^2)-(\frac{1}{2} m_1u_1^2+\frac{1}{2} m_2u_2^2)\\\\=\frac{1}{2} (m_1(v_1^2-u_1^2)+m_2(v_2^2-u_2^2))

substitute the value in the equation above

=\frac{1}{2} (1850((0.250)^2-(1.4)^2)+(1450((0.3670)^2-(-1.10)^2)\\\\=\frac{1}{2}(11850(0.0625-1.96)+(1450(0.1347)-(1.21))\\\\= \frac{1}{2}(11850(-1.8975))+(1450(-1.0753))\\\\=\frac{1}{2} (-3510.375+(-1559.185)\\\\=\frac{1}{2} (-5069.56)\\\\=-2534.78J

Hence, the change in combine kinetic energy is -2534.78J

8 0
3 years ago
How many excess electrons must be present on each sphere if the magnitude of the force of repulsion between them is 4.57×10−21 n
hichkok12 [17]

Answer:

891 excess electrons must be present on each sphere

Explanation:

One Charge = q1 = q

Force = F = 4.57*10^-21 N  

Other charge = q2 =q

Distance = r = 20 cm = 0.2 m  

permittivity of free space = eo =8.854×10−12 C^2/ (N.m^2)  

Using Coulomb's law,

F=[1/4pieo]q1q2/r^2

F = [1/4pieo]q^2 / r^2

q^2 =F [4pieo]r^2

q =  r*sq rt F[4pieo]

 q=0.2* sq rt[ 4.57 x 10^-21]*[4*3.1416*8.854*10^-12]

q = 1.42614*10^ -16 C

number of electrons = n = q/e=1.42614*10^ -16 /1.6*10^-19

n =891

 891 excess electrons must be present on each sphere  

5 0
3 years ago
Other questions:
  • What are four types of pathogens and what type of disease or sickness do they cause?
    8·1 answer
  • A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
    5·1 answer
  • A young man exerted a force of 9000N on a stalled car but was unable to move it. How much work was done?
    5·1 answer
  • The moon and other satellites rotate around the earth. Identify the force that keeps these satellites in orbit. A) gravity B) fr
    12·2 answers
  • Hydrogen peroxide is sold commercially as an aqueous solution in brown bottles to protect it from light. Calculate the longest w
    6·2 answers
  • What are the evidences of molecular theory of magnetism​
    7·1 answer
  • While traveling north on an expressway, a car traveling 60 mph (miles per hour) slows down to 30 mph in 12 minutes due to traffi
    10·1 answer
  • The sun's energy is stored in fossil fuels. true or false.
    9·1 answer
  • . Energy can neither be created nor be destroyed, but it can be changed from one form to another", this law is known as kinetic
    10·1 answer
  • What term was used to describe the final digit
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!