Answer:
The volume of the gas will be 78.31 L at 1.7 °C.
Explanation:
We can find the temperature of the gas by the ideal gas law equation:

Where:
n: is the number of moles
V: is the volume
T: is the temperature
R: is the gas constant = 0.082 L*atm/(K*mol)
From the initial we can find the number of moles:

Now, we can find the temperature with the final conditions:

The temperature in Celsius is:

Therefore, the volume of the gas will be 78.31 L at 1.7 °C.
I hope it helps you!
I think it might be D or B
And my other two might be A or C
Answer:
m = 4450 g
Explanation:
Given data:
Amount of heat added = 4.45 Kcal ( 4.45 kcal ×1000 cal/ 1kcal = 4450 cal)
Initial temperature = 23.0°C
Final temperature = 57.8°C
Specific heat capacity of water = 1 cal/g.°C
Mass of water in gram = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57.8°C - 23.0°C
ΔT = 34.8°C
4450 cal = m × 1 cal/g.°C × 34.8°C
m = 4450 cal / 1 cal/g
m = 4450 g
Protista .................................
See if the carbon atoms are SP2 or Sp they the coplanirty is more and if its Sp3 hybridization it cant be in coplanar as Sp3 is having Td shape where as sp2 and sp are not :)