Answer:
See explanation below
Explanation:
In this case, let's see both molecules per separate:
In the case of SeO₂ the central atom would be the Se. The Se has oxidation states of 2+, and 4+. In this molecule it's working with the 4+, while oxygen is working with the 2- state. Now, how do we know that Se is working with that state?, simply, let's do an equation for it. We know that this molecule has a formal charge of 0, so:
Se = x
O = -2
x + (-2)*2 = 0
x - 4 = 0
x = +4.
Therefore, Selenium is working with +4 state, the only way to bond this molecule is with a covalent bond, and in the case of the oxygen will be with double bond. See picture below.
In the case of CO₂ happens something similar. Carbon is working with +4 state, so in order to stabilize the charges, it has to be bonded with double bonds with both oxygens. The picture below shows.
Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
Answer is: 0,0095 mol of hydrogen gas will be produced in reaction.
Chemical reaction: Ca + 2HCl → CaCl₂ + H₂.
m(Ca) = 0,38 g.
n(H₂) = ?
n(Ca) = m(Ca) ÷ M(Ca).
n(Ca) = 0,38 g ÷ 40 g/mol
n(Ca) = 0,0095 mol.
from reaction: n(Ca) : n(H₂) = 1 : 1.
n(H₂) = n(Ca) = 0,0095 mol.
n - amount of substance.
Answer:
D.
Explanation:
-log(1.0x10^-5) = pH
pH + pOH = 14 (rearrange it)
OH- = 10^-pOH = 1.0 x 10^-9
- Hope that helped! Let me know if you need further explantion.