I am pretty sure it is B. If it turns litmus paper red it is acidic. The other 2 make no sense.
I might be wrong tho.
Hope that helped☺️
Question is incomplete, complete question is;
A 34.8 mL solution of
(aq) of an unknown concentration was titrated with 0.15 M of NaOH(aq).

If it takes 20.4 mL of NaOH(aq) to reach the equivalence point of the titration, what is the molarity of
? For your answer, only type in the numerical value with two significant figures. Do NOT include the unit.
Answer:
0.044 M is the molarity of
(aq).
Explanation:
The reaction taking place here is in between acid and base which means that it is a neutralization reaction .
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

0.044 M is the molarity of
(aq).
Warmer atoms expand. There is also more movement. This is also explained when putting it into terms with solid vs. gas. in a solid, the atoms vibrate, but they can't move very far because there is not a lot of space between them. In a gas, on the other hand, the atoms are spread apart, and they move very fast. Putting it into context with water, the steam (gas) version is hot, and the ice cube (solid) version is cold.
Answer: The reaction is first order overall.
Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
![Rate=k[A]^x[B]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex%5BB%5D%5Ey)
k= rate constant
For the given rate law:
![Rate=k[A]^1[B]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1%5BB%5D%5E1)
x = 1= order with respect to A
y =1= order with respect to B
n =( x+y)= (1+1) = 2 = Total order
a) If [A] is doubled, the reaction rate will increase by a factor of 2: True
![Rate'=k[2A]^1[B]^1](https://tex.z-dn.net/?f=Rate%27%3Dk%5B2A%5D%5E1%5BB%5D%5E1)
![Rate'=k[2]^1[A]^1[B]^1](https://tex.z-dn.net/?f=Rate%27%3Dk%5B2%5D%5E1%5BA%5D%5E1%5BB%5D%5E1)
![Rate'=[2]^1\times Rate](https://tex.z-dn.net/?f=Rate%27%3D%5B2%5D%5E1%5Ctimes%20Rate)
![Rate'=[2]\times Rate](https://tex.z-dn.net/?f=Rate%27%3D%5B2%5D%5Ctimes%20Rate)
b) The reaction is first order overall: False
The overall order is 1+1= 2.
c) k is the reaction rate constant: True
![Rate=k[A]^x[B]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex%5BB%5D%5Ey)
k= rate constant
d) The reaction is first order in [B]: True
For the given rate law:
![Rate=k[A]^1[B]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1%5BB%5D%5E1)
x = 1= order with respect to A
e) The reaction is first order in [A]: True
For the given rate law:
![Rate=k[A]^1[B]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1%5BB%5D%5E1)
y =1= order with respect to B
Answer:
Picking up marbles and placing them in a sack
Explanation:
The entropy of a chemical system is defined as the measure of disorder. Therefore a negative change in entropy is the movement to a more ordered state. The only option here which achieves a more ordered state, would be the first option.
Picking up marbles and placing them in a stack achieves more order, rather than the other options - that achieve more disorder.