Answer:
The correct answer is a. Both are the same
Explanation:
For this calculation we must use the gravitational attraction equation
F = G m M / r²
Where M will use the mass of the Earth, m the mass of the girl and r is the distance of the girl to the center of the earth that we consider spherical
To better visualize things, let's repair the equation a little
F = m (G M / r²)
The amount in parentheses called acceleration of gravity, entered the force called peos
g = G M / r²
F = W
W = m g
When analyzing this equation we see that the variation in the weight of the girl depends on the distance, which is the radius of the earth plus the height where the girl is
r = Re + h
Re = 6.37 10⁶ m
r² = (Re + h)²
r² = Re² (1 + h / Re)²
Let's replace
W = m (GM / Re²) (1+ h / Re)⁻²
W = m g (1+ h / Re)⁻²
This is the exact expression for weight change with height, but let's look at its values for some reasonable heights h = 6300 m (very high mountain)
h / Re = 10
⁻³
(1+ h / Re)⁻² = 0.999⁻²
Therefore, the negligible weight reduction, therefore, for practical purposes the weight does not change with the height of the mountain on Earth
The correct answer is a
The dog's length, width, height, mass, volume, density, and color are the same in both places.
Answer:
Option D. Weight varies with location, but mass does not.
Explanation:
To know which option is correct, it is important that we have a background knowledge of mass and weight.
A brief summary of the difference between mass and weight is given below:
1. Mass is the quantity of matter present in an object while weight is the gravitational pull on an object.
2. The SI unit of mass is kilogram Kg) while that of weight is Newton (N)
3. Mass is constant while weight varies by location.
4. Mass can measured using a chemical balance or beam balance while weight can be measured using a lever or spring balance.
With the above information, we can see that mass of an object is always but the weight varies by location.
Answer:
No, the truck will not cross the barrier.
The closeness of the truck to the barrier is of 21.875 m
Solution:
As per the question:
Velocity of the truck, v = 25.0 m/s
Acceleration of the truck, a = - 4 
Now,
Since, the barrier at a distance of 100 m. Thus in order to check whether the truck hit the barrier or not, we will see the distance, d it covers by using the kinematic eqn:

Final velocity, v' = 0 m/s
Initial velocity = v
Now,


d = 78.125 m
Thus the truck will not cross the barrier.
Distance between the barrier and the truck:
100 - 78.125 = 21.875 m