Initial velocity (Vi) = 25 m/s
acceleration (a) = 
time interval (t) = 5 sec
let us assume that final velocity after 5 sec be Vf
As acceleration is constant, we can apply the the equation of motion with constant acceleration i.e. 
Hence, 
so, the velocity of bicyclist will be 5 m/s after 5 sec
Answer:
In a velocity selector, there are two forces namely;
» Electric field Intensity
» Magnetic field density
<u>Relationship</u><u>:</u>

E is the electric field intensity
B is the magnetic flux density
The answer is 165.3 cm³.
P1 * V1 / T1 = P2 * V2 / T2
The initial sample:
P1 = 84.6 kPa
V1 = 215 cm³
T1 = 23.5°C = 23.5 + 273 K = 296.5 K
At STP:
P2 = 101.3 kPa
V2 = ?
T2 = 273 K
Therefore:
84.6 * 215 / 296.5 = 101.3 * V2 / 273
61.34 = 101.3 * V2 / 273
V2 = 61.34 * 273 / 101.3
V2 = 165.3 cm³
Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)
According to the physical fact that a<span>mplitude and energy have proportional values, this statement is definitely FALSE. Pay attention on the words ''</span><span> inversely related'', that will be the main point which will make it absolutely clear. Hope you will find this answer helpful! Regards.</span>