Answer:
time period is increased so the clock will become SLOW
Explanation:
As we know that the time period of the simple pendulum is given by the formula

here we know that
L = distance of the pendulum bob from the hinge
g = acceleration due to gravity
now here the bob slide down so that the length of the pendulum is being increased
so time period T of the pendulum is also increased
so here the pendulum will take more time to oscillate or to complete one oscillation
so clock will become SLOW
Answer:
Explanation:
We shall apply conservation of momentum along x and y axis.
Let the final momentum of second particle be p₁ along x axis and p₂ along y axis.
Considering momentum along x axis
2 + 0 = 3 cos 45 + p₁
p₁ = 2-2.12 = - 0.12 kg m/s
Considering momentum along y axis
4 + 0 = 3 sin 45 + p₂
p₂ = 4-2.12 = 1.88 kg m/s
Final momentum = √ ( p₁² + p₂² )
=√ ( .12² + 1.88² )
= 1.88 approx
Momentum equation is
change in momentum = mass•initial velocity•final velocity
so....
p=700(15) because your initial is 30, and your final in 15, so you subtract! hope that helped!
Answer:A
Explanation:
In R-L circuit current is given by
![i=i_0\left [ 1-e^{\frac{-t}{L/R}}\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-e%5E%7B%5Cfrac%7B-t%7D%7BL%2FR%7D%7D%5Cright%20%5D)
where i=current at any time t

R=resistance
L=Inductance
at t=0
approaches to 1
therefore ![i=i_0\left [ 1-1\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-1%5Cright%20%5D)
i=0
when t approaches to
,
approaches to zero
thus 
thus we can say that initially circuit act as broken wire with zero current
and it increases exponentially with time and act as ordinary connecting wire
Answer: Option <em>a.</em>
Explanation:
Kepler's 2nd law of planetary motion states:
<em>A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.</em>
It tells us that it doesn't matter how far Earth is from the Sun, at equal times, the area swept out by Earth's orbit it's always the same independently from the position in the orbit.