Answer:

Explanation:
Given that,
An infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 4.39 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
We know that,

So, the wavelength of the infrared radiation is
.
The lights are wired in PARALLEL.
In fact, when the lights are connected in parallel, they are connected on separate branches to the source of voltage, so if one light bulb burns out, the other lights continue to work because the current continues to flow in the other branches of the circuit.
Vice-versa, if the light bulbs are connected in series, they are on the same branch This means that if one of them burns out, the circuit is open in that point, so the current cannot flow anymore and the other light bulbs turn off as well.
The strength of the electric and magnetic fields there is no physical "distance" of oscillation here. nothing is actually moving up and down if you draw light as a sinusoidal wave, the up and down motion is the strength of the EM fields cheers