I think the answer is it represent the shape of orbitals that electrons can occupy within an atom.
Answer:
You can do that yourself, but there's a example question below. And, if for example, I just answer your question and you don't even try to answer. it dosent matter.
Explanation:Force=Mass x Acceleration -or- F=ma
where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or acceleration.
m=F/a and a=F/m Example:
Engineers at the Johnson Space Center must determine the net force needed for a rocket to achieve an acceleration of 70 m/s2. If the mass of the rocket is 45,000 kg, how much net force must the rocket develop?
Using Newton's second law, F=ma
F=(45,000 kg)(70 m/s2) = 3,150,000 kg m/s2 F=3,150,000 N Note that the units kg m/s2 and newtons are equivalent; that is, 1 kg m/s2
Answer:
how can I solve this ?4Al+3O2 produce 2Al2O3 find a) oxygen atoms needed to react with 5.4 g of aluminium b) grams of oxygen needed to react with 0.6 mol of aluminium?
(A) n=m/M,
n(Al)=5.4/27=0.2 moles
n(O2)=n(Al)*3/4=0.2*3/4=0.15 moles
Number of oxygen atoms= n(O2)*Avogadro's number
=0.15*6.02*10^23=9.03*10^22 oxgyen atoms
(B)
n=m/M
n(Al)=0.6/27=0.02222 moles
n(O2)=n(Al)*3/4=0.016666 moles
m=n*M
m(O2)=0.0166666*32=0.53333 grams
Matter is everything and everything is made of matter, everything physical at least
Answer:
Salt domes result when <u><em>the pressure of overlying rock forces the salt to rise. (Option 2)</em></u>
Explanation:
In geology it is called the gently wavy and rounded relief dome.
Salt has some special properties like rock:
- Salt has a lower specific gravity in relation to a common mineral.
- Salts deform plastically and are very mobile.
- Salts have a high water solubility.
These properties allow, if the pressure is very high, that the salt layers move upwards (due to their lower density). That is, the internal forces produce the elevation of the strata by means of the pressure they exert towards a higher point, generating that the salt looks for its way towards the surface [that is, the salt ascends through the sedimentary layers of the earth's crust, crossing them and deforming them] and causing the bulging structure. The oldest strata are located in the central area of the dome, while the most modern are distributed in the farthest radius. The structure is called salt or diapiro dome, the phenomenon by which it is formed is called diapirism.
Finally, you can say that <u><em>Salt domes result when the pressure of overlying rock forces the salt to rise.</em></u>