Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
Chlorine is the correct answer so A
Answer is: 3. Water and carbon dioxide should both be moved to the products side, and glucose and oxygen should be moved to the reactants side.
Balanced chemical reaction for cellular respiration (convert biochemical energy):
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + energy, or:
glucose + oxygen → carbon dioxide + water + energy.
This reaction is exothermic (energy is released).
Both of you are overlooking a pretty big component of the question...the Group I cation isn't being dissociated into water. We're testing the solubility of the cation when mixed with HCl. And this IS a legitimate question, seeing as our lab manual is the one asking.
<span>By the way, the answer you're looking for is "Because Group I cations have insoluble chlorides". </span>
<span>"In order...to distinguish cation Group I, one adds HCl to a sample. If a Group I cation is present in the sample, a precipitate will form." </span>