Answer:
Platinum Gold and silver are used to make jewellery because of the following reasons. They are highly lustrous metals which are resistant to corrosion. They are highly malleable and ductile so can be transformed into any shape or design.
Explanation:
Answer:
4.8 %
Explanation:
We are asked the concentration in % by mass, given the molarity of the solution and its density.
0.8 molar solution means that we have 0.80 moles of acetic acid in 1 liter of solution. If we convert the moles of acetic acid to grams, and the 1 liter solution to grams, since we are given the density of solution, we will have the values necessary to calculate the % by mass:
MW acetic acid = 60.0 g/mol
mass acetic acid (the solute) = 0.80 mol x 60 g / mol = 48.00 g
mass of solution = 1000 cm³ x 1.010 g/ cm³ (1l= 1000 cm³)
= 1010 g
% (by mass) = 48.00 g/ 1010 g x 100 = 4.8 %
Given parameters:
Volume of CuSO₄ = 250mL
Concentration of CuSO₄ = 2.01M
Unknown:
Mass of CuSO₄.5H₂O = ?
To solve this problem, we must write the chemical relationship between both species.;
CuSO₄.5H₂O → CuSO₄ + 5H₂O
Now that we know the expression, it is possible to solve for the unknown mass.
First find the number of moles of CuSO₄;
Number of moles = Concentration x Volume
Take 250mL to L so as to ensure uniformity of units;
Volume = 250 x 10⁻³L
Input the parameters and solve for number of moles;
Number of moles = 250 x 10⁻³ x 2.01 = 0.5mol
From the equation;
1 mole of CuSO₄ is produced from 1 mole of CuSO₄.5H₂O
So 0.5 moles of CuSO₄ will be produced from 0.5 moles of CuSO₄.5H₂O
Now let us find the molar mass of CuSO₄.5H₂O = 63.6 + 32 + 4(16) + 5(2x1 + 16) = 249.6g/mole
Mass of CuSO₄.5H₂O = number of moles x molar mass
= 0.5 x 249.6
= 124.8g
The mass of CuSO₄.5H₂O is 124.8g
The unit 'mW' means milliwatts. It is a unit of work. There are 1,000 milliwatts in a 1 Watt of work. In 4 hours, there are 14,400 seconds.
Work= Energy/time
17 mW * 1 W/1000 mW = Energy/(14,400 seconds)
Solving for energy,
Energy = 244.8 J
Energy/photon = 244.8 J/(6.04×10²⁰) = 4.053×10⁻¹⁹ J/photon
Using the Planck's equation:
E = hc/λ
where h = 6.626×10⁻³⁴ m²·kg/s, c = 3,00,000,000 m/s and λ is the wavelength
4.053×10⁻¹⁹ J/photon = (6.626×10⁻³⁴ m²·kg/s)(3,00,000,000 m/s)/λ
λ = 4.9×10⁻⁷ m or 49 micrometers
Gain enough kinetic energy to get past each other. Ad you heat up a substance, the temperature increases as does the kinetic energy of the particles. At a point the temperature of the substance will stop increasing. The energy is now being used to increase the potential and move the particles further apart.