Given :
Number of moles , n = 36.25 mol .
Molarity , M = 1.25 M .
To Find :
The volume of water required .
Solution :
Moarity is given by :

So , 
Here , n is number of moles and M is molarity .
Putting all values in above equation , we get :

Therefore , volume of water required is 29 L .
Chlorine will have the slowest rate of diffusion because it has the highest relative molecular mass of 71 followed by O₂ with 32, then Neon 20 then He with 2
The rate of diffusion of a gas is inversely proportional to the square root of its relative molecular mass.
You are given
200 grams of H2O(s) at an initial temperature of 0°C. you are also given the
final temperature of water after heating at 65°C. You are required to get the
total amount of heat to melt the sample. The specific heat capacity, cp, of
water is 4.186 J/g-°C. Let us say that T1 = 0°C and T2 = 65°C. The equation for
heat, Q, is
Q = m(cp)(T2-T1)
Q = 200g(4.186
J/g-°C )(65°C - 0°C)
<u>Q =
54,418J</u>
What happens is it makes water
Answer:
3 hours
Explanation:
To know the the correct answer to the question given above, it is important we know the definition of half-life.
The half-life of a substance is simply defined as the time taken for half the substance to decay.
Considering the diagram given above, the initial mass of the substance is 100 g.
Half of the initial mass = 100 / 2 = 50 g
Now, we shall determine the time from the graph taken to get to 50 g.
Considering the diagram given above, the time taken to get to 50 g is 3 hours.
Therefore, the half-life of the material is 3 hours.