Show us the pictures I don't see it
The acceleration due to gravity of the planet X is 1 m/s².
The given parameters;
- height above the ground, h = 100 m
- initial velocity of the rock, u = 15 m/s
- time of motion of the rock, t = 10 s
The acceleration due to gravity is calculated as follows;

Thus, the acceleration due to gravity of the planet X is 1 m/s²
Learn more here: brainly.com/question/24564606
The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
Answer:
The swimmer has a distance traveled of 800 meters.
The final displacement of the swimmer is 0 meters.
Explanation:
A lap is a round trip made by a swimmer in the pool, so that the distance traveled by swimmer is sixteen times the length of the swimming pool. That is:


A swimmer has a distance traveled of 800 meters.
The displacement is the distance between swimmer and a reference point, let suppose that reference point is located at the beginning of the first lap. Hence, the final displacement of the swimmer is 0 meters.
Gravity is proportional to its mass<span> and </span>distance between<span> it and another </span><span>object</span>