Answer:
Physical Properties of Sodium
Atomic number 11
Melting point 97.82°C (208.1°F)
Boiling point 881.4°C (1618°F)
Volume increase on melting 2.70%
Latent heat of fusion 27.0 cal/g
Lenntech Water treatment & purification
Toggle navigation
Home Periodic table Elements Sodium
Sodium - Na
Chemical properties of sodium - Health effects of sodium - Environmental effects of sodium
Atomic number
11
Atomic mass
22.98977 g.mol -1
Electronegativity according to Pauling
0.9
Density
0.97 g.cm -3 at 20 °C
Melting point
97.5 °C
Boiling point
883 °C
Vanderwaals radius
0.196 nm
Ionic radius
0.095 (+1) nm
Isotopes
3
Electronic shell
[Ne] 3s1
Energy of first ionisation
495.7 kJ.mol -1
Explanation:
Given that,
Length of gold wire, l = 4 m
Voltage of battery, V = 1.5 V
Current, I = 4 mA
The resistivity of gold, 
Resistance in terms of resistivity is given by :

Also, V = IR
So,

A is area of wire,
, r is radius, r = d/2 (diameter=d)

Out of four option, near option is (C) 17 μm.
Answer:
The tangential speed at Livermore is approximately 284.001 meters per second.
Explanation:
Let suppose that the Earth rotates at constant speed, the tangential speed (
), measured in meters per second, at Livermore (37.6819º N, 121º W) is determined by the following expression:
(1)
Where:
- Rotation time, measured in seconds.
- Radius of the Earth, measured in meters.
- Latitude of the city above the Equator, measured in sexagesimal degrees.
If we know that
,
and
, then the tangential speed at Livermore is:


The tangential speed at Livermore is approximately 284.001 meters per second.
Answer:
The new separation distance between adjacent bright fringes will be <u>4 mm</u>
Explanation:
Since, the distance between adjacent bright fringes is given by the formula:
Δx₁ = λL/d = 2 mm -------- eqn (1)
where,
Δx = Distance between adjacent bright fringes
λ = wavelength of light = constant for both cases
L = Distance between the slits and the screen
d = slit separation
Now, for the second case:
Slit Separation = d/2
Therefore,
Δx₂ = λL/(d/2)
Δx₂ = 2(λL/d)
using eqn (1), we get:
Δx₂ = 2 Δx₁
Δx₂ = 2(2 mm)
<u>Δx₂ = 4 mm</u>
Answer:
1.) Covering the ceiling and walls with soft perforated boards
2.) Hanging curtains round the hall
3.) Having more opening in the wall.
Explanation:
This is due to what we called Reverberation due to poor acoustic properties.
Reverberation can be reduced by;
1.) Covering the ceiling and walls with soft perforated boards
2.) Hanging curtains round the hall
3.) Having more opening in the wall.