Answer:
E = 1440 kJ
Explanation:
It is given that,
Power of a cooker oven is 800 W
Voltage at which it is operated is 230 V
Time, t = 30 minutes = 1800 seconds
We need to find the electrical energy used by the cooker oven. The product of power and time is equal to the energy consumed. So,

So, electrical energy of 1440 kJ is consumed by the cooker oven.
<span>When two objects collide their momentum after the collision is explained by</span> the conservation of momentum
Answer:
that's nice very nice super duper nicer
A single photon carries an energy equal to

where h is the Planck's constant and f is the frequency of the photon.
This means that the higher the frequency of the light, the higher the energy. Among the 5 different options mentioned by the problem, the light with highest frequency is ultraviolet, which has frequencies in the range [3-30] PHz, while visible light (red, blue, green) and infrared have lower frequency, so ultraviolet light has the highest energy per photon.
Answer:
a
The height is 
b
The horizontal distance is 
Explanation:
From the question we are told that
The speed is 
The angle is 
The height of the cannon from the ground is h = 2 m
The distance of the net from the ground is k = 1 m
Generally the maximum height she reaches is mathematically represented as

=> ![H = \frac{(15)^2 [sin (40)]^2 }{2 * 9.8} + 2](https://tex.z-dn.net/?f=H%20%20%3D%20%20%5Cfrac%7B%2815%29%5E2%20%5Bsin%20%2840%29%5D%5E2%20%7D%7B2%20%2A%209.8%7D%20%20%2B%20%202)
=> 
Generally from kinematic equation

Here s is the displacement which is mathematically represented as
s = [-(h-k)]
=> s = -(2-1)
=> s = -1 m
There reason why s = -1 m is because upward motion canceled the downward motion remaining only the distance of the net from the ground which was covered during the first half but not covered during the second half
a = -g = -9.8

So

=> 
using quadratic formula to solve the equation we have

Generally distance covered along the horizontal is

=> 
=> 