1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katyanochek1 [597]
2 years ago
5

What makes building an airplane while flying so difficult?

Engineering
1 answer:
Naddik [55]2 years ago
7 0

Answer: Because if something goes wrong while you are flying it it will crash

Explanation:

You might be interested in
A heat engine that receives heat from a furnace at 1200°C and rejects waste heat to a river at 20°C has a thermal efficiency of
viktelen [127]

Answer:

second-law efficiency  = 62.42 %

Explanation:

given data

temperature T1 = 1200°C = 1473 K

temperature T2 = 20°C  =  293 K

thermal efficiency η = 50 percent

solution

as we know that thermal efficiency of reversible heat engine between same  temp reservoir

so here

efficiency ( reversible ) η1 = 1 - \frac{T2}{T1}      ............1

efficiency ( reversible ) η1  = 1 - \frac{293}{1473}  

so efficiency ( reversible ) η1  = 0.801

so here second-law efficiency of this power plant is

second-law efficiency = \frac{thernal\ efficiency}{0.801}

second-law efficiency = \frac{50}{0.801}  

second-law efficiency  = 62.42 %

3 0
3 years ago
Which statement best describes how a hearing aid works?
Verizon [17]

The following statement best describes how a hearing aid works, An implant bypasses parts of the cochlea and sends messages to the brain, where they are then recognized as sound.

Explanation:

  • The hearing aid works as An implant bypasses parts of the cochlea and sends messages to the brain, where they are then recognized as sound.
  • A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss.
  • Modern devices uses all sophisticated digital signal processing to try and improve the speech understanding, intelligibility and comfort for the user, such as signal processing
  • Almost all hearing aids in use in the US are digital hearing aids Devices similar to hearing aids include cochlear implant.
  • Early devices, such as ear trumpets or ear horns, were the passive amplification cones which were designed to gather the sound energy and directly goes into the ear canal.
  • Most common issues with hearing aid fitting and use are the occlusion effect, loudness recruitment, and understanding speech in noise.

4 0
3 years ago
Repetitive movements at work can lead to injuries. True or False
OverLord2011 [107]
Answer

True

Explanation

RSI can occur when you do repetitive movements. Those movements can cause your muscles and tendons to become damaged over time. Some activities that can increase your risk for RSI are: stressing the same muscles through repetition.
8 0
2 years ago
The B-pillar may also be called the:
slega [8]

Answer:

if you're talking about the car b-post, the answer is "posts"

Explanation:

looked it up

6 0
2 years ago
Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at
sergeinik [125]

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

h_{f} = 173.358 \\h_{fg} = 2402.522

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

h_{2a} =  489.752\\h_{2b} =  313.2

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a}  - h_{4a}) - (h_{2a}  - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26  - 2241.448938 ) - (489.752  - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3a} -  h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4a} -  h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.06485

Part b) @ 4 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b}  - h_{4b}) - (h_{2b}  - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14  - 2405.54119 ) - (313.12  - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3b} -  h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4b} -  h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.038275

6 0
3 years ago
Other questions:
  • What are the causes of kickback on a table-saw?
    13·1 answer
  • What are the weight restrictions for a small UAS, including everything onboard at the time
    12·1 answer
  • 2. One of the many methods used for drying air is to cool the air below the dew point so that condensation or freezing of the mo
    12·1 answer
  • An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two long rods that are
    8·1 answer
  • How did humans create a space suit without ever going. How did we know spaces conditions?
    5·2 answers
  • Can someone please help me with this. Thank you. Ill mark you as brainly.
    11·1 answer
  • Worth 20 points! Please help ASAP!
    5·1 answer
  • 1. In order for a team to accomplish its goal(s), it is NOT important for the team members to
    14·2 answers
  • The hot-wire anemometer.' A hot-wire anemome ter is essentially a fine wire, usually made of platinum,which is heated electrical
    6·1 answer
  • The use of seatbelts in a car has significantly reduced the number of crash fatalities. Which statement best explains how societ
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!