Answer:
B. rotor
Explanation:
The correct answer Is rotor because the others are part of a cars drivetrain
Answer:
(a) T = W/2(1-tanθ) (b) 39.81°
Explanation:
(a) The equation for tension (T) can be derived by considering the summation of moment in the clockwise direction. Thus:
Summation of moment in clockwise direction is equivalent to zero. Therefore,
T*l*(sinθ) + W*(l/2)*cosθ - T*l*cosθ = 0
T*l*(cosθ - sinθ) = W*(l/2)*cosθ
T = W*cosθ/2(cosθ - sinθ)
Dividing both the numerator and denominator by cosθ, we have:
T = [W*cosθ/cosθ]/2[(cosθ - sinθ)/cosθ] = W/2(1-tanθ)
(b) If T = 3W, then:
3W = W/2(1-tanθ),
Further simplification and rearrangement lead to:
1 - tanθ = 1/6
tanθ = 1 - (1/6) = 5/6
θ = tan^(-1) 5/6 = 39.81°
Answer:d
Explanation:
Given
Temperature
Also 
R=287 J/kg
Flow will be In-compressible when Mach no.<0.32
Mach no.
(a)
Mach no.
Mach no.=0.63
(b)
Mach no.
Mach no.=0.31
(c)
Mach no.
Mach no.=1.27
(d)
Mach no.
Mach no.=0.127
From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.
Answer:
If everything is working properly, your AC should never need a refrigerant. In fact, a central air conditioner should never need refrigerant added unless there's a refrigerant leak. We'll explain how an AC uses refrigerant and what to do if you think your system is low on refrigerant. OR When you check your air conditioner unit, or your outdoor central air unit with the fan, and see an ice building up on the refrigerant line, then you may be low on freon. ... This will cause the surrounding moisture on the refrigerant line to freeze up. This is a sign you need freon.
Explanation:
(this is according to plumbing services website)