Answer and Explanation:
The answer is attached below
Answer and Explanation:
The explanation is attached below
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Answer:
$5.184
Explanation:
The cost can be calculated using the formula:
Before using this, we require the following conversions:
<em>320 W → kW:</em>
<em>30 Days → Hours:</em>
Using the above stated formula:
Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂
The heat supplied = × Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied = ·
= 20 kg/s
The heat supplied = 20* = 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K
T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust = × = 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.