Answer:
Fully Automated
Periodic Maintenance Activities
Answer:
98,614.82 W/m²
Explanation:
Where;
Q = the amount of heat loss from the pipe
h = the heat transfer coefficient of the pipe = 50 W/m².K
T₁ = the ambient temperature of the pipe = 30⁰C
T₂ = the outside temperature of the pipe = 100⁰C
L= the length of pipe
r₁ = inner radius of the pipe = 20mm
r₂ = outer radius of the pipe = 25mm
To determine the amount of heat loss from the pipe per unit length
From the equation above
= 98,614.82 W/m²
Answer:
All 3 principal stress
1. 56.301mpa
2. 28.07mpa
3. 0mpa
Maximum shear stress = 14.116mpa
Explanation:
di = 75 = 0.075
wall thickness = 0.1 = 0.0001
internal pressure pi = 150 kpa = 150 x 10³
torque t = 100 Nm
finding all values
∂1 = 150x10³x0.075/2x0,0001
= 0.5625 = 56.25mpa
∂2 = 150x10³x75/4x0.1
= 28.12mpa
T = 16x100/(πx75x10³)²
∂1,2 = 1/2[(56.25+28.12) ± √(56.25-28.12)² + 4(1.207)²]
= 1/2[84.37±√791.2969+5.827396]
= 1/2[84.37±28.33]
∂1 = 1/2[84.37+28.33]
= 56.301mpa
∂2 = 1/2[84.37-28.33]
= 28.07mpa
This is a 2 d diagram donut is analyzed in 2 direction.
So ∂3 = 0mpa
∂max = 56.301-28.07/2
= 14.116mpa
Answer:
The speed of shaft is 1891.62 RPM.
Explanation:
given that
Amplitude A= 0.15 mm
Acceleration = 0.6 g
So
we can say that acceleration= 0.6 x 9.81
We know that
So now by putting the values
We know that
ω= 2πN/60
198.0=2πN/60
N=1891.62 RPM
So the speed of shaft is 1891.62 RPM.