Answer:
1. Yes.
2. Localized corrosion
Explanation:
Should she be worried about corrosion?
Yes, the engineer needs to be worried about corrosion as stainless steel has a lower resistance to corrosion, in other words, stainless steel corrodes faster than Titanium.
If so, what types of corrosion could take place?
The type of corrosion that takes place is called Localized corrosion. Localized corrosion occurs when a small part of a component experiences corrosion. In this case, the ball component of the femoral stem is made of stainless steel which will corrode faster than the other parts of the femoral stem which is made of Titanium.
Answer:
A. Oil changes
Explanation:
It depends on the car and its usage and environment. Usually oil is supposed to be changed every few months, more often if the car is driven a lot. Coolant changes may be indicated as seasons change, so will generally occur less frequently than oil changes.
Tire and brake replacement depend on usage and driving habits. Some owners may never have to replace either one, if they trade their car every year or two. Folks who drive with their foot on the brake pedal may have to replace brakes relatively often.
The most frequent task is generally oil changes.
Answer:
Steps:
1. Create a text file that contains blade diameter (in feet), wind velocity (in mph) and the approximate electricity generated for the year
2. load the data file for example, in matlab, use ('fileame.txt') to load the file
3. create variables from each column of your data
for example, in matlab,
x=t{1}
y=t{2}
4. plot the wind velocity and electricity generated.
plot(x, y)
5. Label the individual axis and name the graph title.
title('Graph of wind velocity vs approximate electricity generated for the year')
xlabel('wind velocity')
ylabel('approximate electricity generated for the year')
Answer:
Pressure = 115.6 psia
Explanation:
Given:
v=800ft/s
Air temperature = 10 psia
Air pressure = 20F
Compression pressure ratio = 8
temperature at turbine inlet = 2200F
Conversion:
1 Btu =775.5 ft lbf,
= 32.2 lbm.ft/lbf.s², 1Btu/lbm=25037ft²/s²
Air standard assumptions:
= 0.0240Btu/lbm.°R, R = 53.34ft.lbf/lbm.°R = 1717.5ft²/s².°R 0.0686Btu/lbm.°R
k= 1.4
Energy balance:
As enthalpy exerts more influence than the kinetic energy inside the engine, kinetic energy of the fluid inside the engine is negligible
hence 

= 20+460 = 480°R
= 533.25°R
Pressure at the inlet of compressor at isentropic condition

=
= 14.45 psia
Answer and explanation:
The graphical representation of the electronic eye
The state table showing
the present state
input
Next state and
the output
are shown in the attached file